Menu
July 7, 2019  |  

Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States.

The recent discovery of a plasmid-borne colistin resistance gene, mcr-1, in China heralds the emergence of truly pan-drug-resistant bacteria (1). The gene has been found primarily in Escherichia coli but has also been identified in other members of the Enterobacteriaceae in human, animal, food, and environmental samples on every continent (2–5). In response to this threat, starting in May 2016, all extended-spectrum-ß-lactamase (ESBL)-producing E. coli clinical isolates submitted to the clinical microbiology laboratory at the Walter Reed National Military Medical Center (WRNMMC) have been tested for resistance to colistin by Etest. Here we report the presence of mcr-1 in an E. coli strain cultured from a patient with a urinary tract infection (UTI) in the United States. The strain was resistant to colistin, but it remained susceptible to several other agents, including amikacin, piperacillin-tazobactam, all carbapenems, and nitrofurantoin (Table 1).


July 7, 2019  |  

First report of blaIMP-14 on a plasmid harboring multiple drug resistance genes in Escherichia coli ST131.

The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant E. coli, we identified an ST131 strain harboring blaIMP-14 within a class 1 integron, itself nested within a ~54kb multi-drug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern. Copyright © 2016 Stoesser et al.


July 7, 2019  |  

Complete genome sequence of a multidrug-resistant Acinetobacter baumannii isolate obtained from a Mexican hospital (sequence type 422).

Acinetobacter baumannii has emerged as a dangerous nosocomial pathogen, particularly for severely ill patients in intensive care units and patients with hematologic malignancies. Here, we present the complete genome sequence of a multidrug-resistant A. baumannii isolate, recovered from a Mexican hospital and classified as sequence type 422 according to the multilocus sequence typing Pasteur scheme. Copyright © 2016 Castro-Jaimes et al.


July 7, 2019  |  

Plasmid dynamics in KPC-positive Klebsiella pneumoniae during long-term patient colonization.

Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists’ actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms.In 2011, the NIH Clinical Center had a nosocomial outbreak involving 19 patients who became colonized or infected with blaKPC-positive Klebsiella pneumoniae Patients who have intestinal colonization with blaKPC-positive K. pneumoniae are at risk for developing infections that are difficult or nearly impossible to treat with existing antibiotic options. Two of those patients remained colonized with blaKPC-positive Klebsiella pneumoniae for over a year, leading to the initiation of a detailed genomic analysis exploring mixed colonization, plasmid recombination, and plasmid diversification. Whole-genome sequence analysis identified a variety of changes, both subtle and large, in the blaKPC-positive organisms. Long-term colonization of patients with blaKPC-positive Klebsiella pneumoniae creates new opportunities for horizontal gene transfer of plasmids encoding antibiotic resistance genes and poses complications for the delivery of health care. Copyright © 2016 Conlan et al.


July 7, 2019  |  

Complete genome sequence of a Klebsiella pneumoniae strain carrying blaNDM-1 on a multidrug resistance plasmid

Here, we report the genome sequence of a blaNDM-1-positive Klebsiella pneumoniae AATZP isolate cultured from a perirectal surveillance swab collected upon admission of a patient to the NIH Clinical Center in 2014. Genome sequencing of this isolate revealed three plasmids, including one carrying the blaNDM-1 gene encoding resistance to carbapenems. Copyright © 2016 Conlan et al.


July 7, 2019  |  

Whole-genome sequence of multidrug-resistant Pseudomonas aeruginosa strain BAMCPA07-48, isolated from a combat injury wound.

We report here the complete genome sequence of Pseudomonas aeruginosa strain BAMCPA07-48, isolated from a combat injury wound. The closed genome sequence of this isolate is a valuable resource for pathogenome characterization of P. aeruginosa associated with wounds, which will aid in the development of a higher-resolution phylogenomic framework for molecular-guided pathogen-surveillance. Copyright © 2016 Sanjar et al.


July 7, 2019  |  

Complete genome sequence of Salmonella enterica subsp. enterica serovar Indiana C629, a carbapenem-resistant bacterium isolated from chicken carcass in China.

The carbapenem-resistant Salmonella enterica subsp. enterica serovar Indiana strain C629 was isolated from a chicken carcass collected from a slaughterhouse in Qingdao, China. The complete genome sequence of C629 contains a circular 4,791,723-bp chromosome and a circular 210,106-bp plasmid. Genes involved in carbapenem resistance of this bacterium were identified by whole-genome analysis. Copyright © 2016 Wang et al.


July 7, 2019  |  

Next-generation sequencing: a diagnostic one-stop shop for Hepatitis C?

Before starting chronic hepatitis C treatment, the viral genotype/subtype has to be accurately determined and potentially coupled with drug resistance testing. Due to the high genetic variability of the hepatitis C virus, this can be a demanding task that can potentially be streamlined by viral whole-genome sequencing using next-generation sequencing as demonstrated by an article in this issue of the Journal of Clinical Microbiology by E. Thomson, C. L. C. Ip, A. Badhan, M. T. Christiansen, W. Adamson, et al. (J Clin Microbiol. 54:2455-2469, 2016, http://dx.doi.org/10.1128/JCM.00330-16). Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Complete circular genome sequence of successful ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (OC8) in Russia: one-megabase genomic inversion, IS256’s spread, and evolution of Russia ST8-IV.

ST8/SCCmecIV community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has been a common threat, with large USA300 epidemics in the United States. The global geographical structure of ST8/SCCmecIV has not yet been fully elucidated. We herein determined the complete circular genome sequence of ST8/SCCmecIVc strain OC8 from Siberian Russia. We found that 36.0% of the genome was inverted relative to USA300. Two IS256, oppositely oriented, at IS256-enriched hot spots were implicated with the one-megabase genomic inversion (MbIN) and vSaß split. The behavior of IS256 was flexible: its insertion site (att) sequences on the genome and junction sequences of extrachromosomal circular DNA were all divergent, albeit with fixed sizes. A similar multi-IS256 system was detected, even in prevalent ST239 healthcare-associated MRSA in Russia, suggesting IS256’s strong transmission potential and advantage in evolution. Regarding epidemiology, all ST8/SCCmecIVc strains from European, Siberian, and Far Eastern Russia, examined had MbIN, and geographical expansion accompanied divergent spa types and resistance to fluoroquinolones, chloramphenicol, and often rifampicin. Russia ST8/SCCmecIVc has been associated with life-threatening infections such as pneumonia and sepsis in both community and hospital settings. Regarding virulence, the OC8 genome carried a series of toxin and immune evasion genes, a truncated giant surface protein gene, and IS256 insertion adjacent to a pan-regulatory gene. These results suggest that unique single ST8/spa1(t008)/SCCmecIVc CA-MRSA (clade, Russia ST8-IVc) emerged in Russia, and this was followed by large geographical expansion, with MbIN as an epidemiological marker, and fluoroquinolone resistance, multiple virulence factors, and possibly a multi-IS256 system as selective advantages.


July 7, 2019  |  

Complete genome sequences of multidrug-resistant Campylobacter jejuni strain 14980A (turkey feces) and Campylobacter coli strain 14983A (housefly from a turkey farm), harboring a novel gentamicin resistance mobile element.

Multidrug resistance (MDR) in foodborne pathogens is a major food safety and public health issue. Here we describe whole-genome sequences of two MDR strains of Campylobacter jejuni and Campylobacter coli from turkey feces and a housefly from a turkey farm. Both strains harbor a novel chromosomal gentamicin resistance mobile element. Copyright © 2016 Miller et al.


July 7, 2019  |  

Pathogenesis of multi drug-resistant and extensively drug-resistant tuberculosis as a determinant of future treatment success.

Multidrug-resistant (MDR)/extensively drug-resistant (XDR) tuberculosis (TB) is a significant threat to global TB control [1]. In most cases, treatment of MDR/XDR TB is not standardized, and clinicians have adopted a variety of treatment strategies. These strategies include switching to a regimen of new drugs, increasing the dosage of the same drugs, rarely used drugs (which have widespread resistance), etc. Drug resistance is a manmade phenomenon that is driven by treatment strategy (i.e., regimen). These divergent approaches may differentially drive the evolution of bacteria. Some instances of this evolution have already occurred [2]. The community’s focus has been on drug resistance; therefore, the consequence of this divergence is usually by different mechanisms of resistance [2] and [3]. However, the full scope of the consequential microevolution frequently goes unnoticed because it also affects important factors such as fitness and virulence. In this study, we aimed to develop a comprehensive understanding of the consequences of differential TB treatment to build more accurate prognostics for future treatments.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.