Menu
June 1, 2021  |  

Full-Length Sequencing of CYP2D6Variants with PacBio HiFi Reads

CYP2D6 is a highly polymorphic gene with more than 130 named variants, including deletions, duplications, single nucleotide polymorphisms, and other types of variation (Butler, 2018; Black et al., 2011). These variants affect the rate of metabolism in human individuals of approximately 25% of common prescription drugs (Owen et al., 2019;). PacBio SMRT sequencing is a proven tool for the interrogation of CYP2D6 variants (Qiao et al., 2016; Buermans et al., 2017).  Now with HiFi sequencing, we have developed a streamlined end-to-end workflow for the more accurate detection of highly polymorphic CYP2D6 loci. This study also evaluates the advantage of HiFi reads for the sequencing of full-length CYP2D6 genes with variants previously annotated by other technologies.

Twenty-two Coriell pharmacogenomic samples containing variant CYP2D6 alleles were amplified using long-range PCR. The primer pairs for the amplification of upstream CYP2D6 gene duplications and the downstream CYP2D6 genes were adapted from a publication in Pharmacogenomics (Qiao et al., 2019). A 2-step PCR method was used for the addition of the unique barcode to each sample, allowing pooling of multiple samples for SMRTbell library prep. The resulting SMRTbell Library was then sequenced on the PacBio Sequel II/IIe system for 20-hours. HiFi reads (>QV20) were demultiplexed on SMRTlink and clustered into haplotypes. The consensus reads of each haplotype were produced using the “pbaa” amplicon analysis and then mapped to the human reference genome GRCh38 for the assignment of CYP2D6 types.

More than 700,000 full-length HiFi reads were generated with an average read length of 8.2 kb and a mean accuracy of 99.9%. Nearly all (>99%) demultiplexed reads were on target to the CYP2D6 locus. Genotyping of the CYP2D6 region with PacBio HiFi reads identified all expected upstream duplications and downstream CYP2D6 alleles including single nucleotide variants, except for *5 allele which is a complete deletion. For 21 of 22 samples, the types from HiFi reads matched the diplotypes identified from microarrays and qPCR, while providing full resolution of each allele. One sample was identified as being mistyped by microarray as *1/*41. HiFi sequencing produced a correct type of *33/*41. In addition, for 4/21 samples HiFi sequencing identified duplications missed by microarray or real-time PCR.

The PCR and sequencing assay we have presented here for the detection of CYP2D6 variants is robust and specific. Assignment of new alleles or duplications on pharmacogenomic samples from HiFi reads suggests that PacBio sequencing technology can reveal new diplotypes that were not characterized accurately by other technologies. This study demonstrates that HiFi sequencing provides much higher resolution than either microarray or real-time PCR for the detection of polymorphic genes, while maintaining sensitivity and accuracy.


April 21, 2020  |  

Characterization of Reference Materials for Genetic Testing of CYP2D6 Alleles: A GeT-RM Collaborative Project.

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination Program studies and 42 additional samples that had not been characterized previously. DNA samples were distributed to volunteer testing laboratories for genotyping using a variety of commercially available and laboratory-developed tests. These publicly available samples will support the quality-assurance and quality-control programs of clinical laboratories performing CYP2D6 testing.Published by Elsevier Inc.


April 21, 2020  |  

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that are being applied to pathogenic microorganisms and viruses, constitutional disorders, pharmacogenomics, cancer, and more.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

A Look to the Future: Pharmacogenomics and Data Technologies of Today and Tomorrow

The ability to measure chemical and physiologic states in tandem with good experimental design has enabled the discovery and characterization of a plethora of gene–drug interactions. Recent advances in methods to measure organic molecules and phenotypes, describe clinical states, and reason across federated data offer an increasingly precise set of technologies for pharmacogenomics discovery and clinical translation.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 19, 2019  |  

Long-read Single-Molecule Real-Time (SMRT) full gene sequencing of cytochrome P450-2D6 (CYP2D6).

The CYP2D6 enzyme metabolizes ~25% of common medications, yet homologous pseudogenes and copy-number variants (CNVs) make interrogating the polymorphic CYP2D6 gene with short-read sequencing challenging. Therefore, we developed a novel long-read, full gene CYP2D6 single-molecule real-time (SMRT) sequencing method using the Pacific Biosciences platform. Long-range PCR and CYP2D6 SMRT sequencing of 10 previously genotyped controls identified expected star (*) alleles, but also enabled suballele resolution, diplotype refinement, and discovery of novel alleles. Coupled with an optimized variant calling pipeline, CYP2D6 SMRT sequencing was highly reproducible as triplicate intra- and inter-run non-reference genotype results were completely concordant. Importantly, targeted SMRT sequencing of upstream and downstream CYP2D6 gene copies characterized the duplicated allele in 15 control samples with CYP2D6 CNVs. The utility of CYP2D6 SMRT sequencing was further underscored by identifying the diplotypes of 14 samples with discordant or unclear CYP2D6 configurations from previous targeted genotyping, which again included suballele resolution, duplicated allele characterization, and discovery of a novel allele and tandem arrangement (CYP2D6*36+*41). Taken together, long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


July 19, 2019  |  

De novo assembly and phasing of a Korean human genome.

Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9?Mb and a scaffold N50 size of 44.8?Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03?Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6?Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of unreported and Asian-specific structural variants, and high-quality haplotyping of clinically relevant alleles for precision medicine.


July 19, 2019  |  

Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing.

CYP2D6 is one of the most studied enzymes in the field of pharmacogenetics. The CYP2D6 gene is highly polymorphic with over 100 catalogued star (*) alleles, and clinical CYP2D6 testing is increasingly accessible and supported by practice guidelines. However, the degree of variation at the CYP2D6 locus and homology with its pseudogenes make interrogating CYP2D6 by short-read sequencing challenging. Moreover, accurate prediction of CYP2D6 metabolizer status necessitates analysis of duplicated alleles when an increased copy number is detected. These challenges have recently been overcome by long-read CYP2D6 sequencing; however, such platforms are not widely available. This review highlights the genomic complexities of CYP2D6, current sequencing methods and the evolution of CYP2D6 from allele discovery to clinical pharmacogenetic testing.


July 7, 2019  |  

Long-read sequencing offers path to more accurate drug metabolism profiles

In the complex drug discovery process, one of the looming questions for any new compound is how it will be metabolised in a human bodyWhi|e there are several methods for evaluating this, one of the most common involves CYP2D6,the enzyme encoded by the cytochrome P450—2D6 gene.This enzyme is involved in metabolising a quarter of all commonly used medications, making it an important target for ADME and pharmacogenomics studies. It is known to activate some drugs and to play a role in the deactivation or excretion of others.


July 7, 2019  |  

Copy number variation probes inform diverse applications

A major contributor to inter-individual genomic variability is copy number variation (CNV). CNVs change the diploid status of the DNA, involve one or multiple genes, and may disrupt coding regions, affect regulatory elements, or change gene dosage. While some of these changes may have no phenotypic consequences, others underlie disease, explain evolutionary processes, or impact the response to medication.


July 7, 2019  |  

Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai.

For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.


July 7, 2019  |  

Precision medicine and rare genetic variants.

Interindividual variability in drug metabolism and drug toxicity persists as a major problem for drug development and treatment. Increased or decreased capacity for drug elimination or drug action reduces drug efficacy and places substantial economic burdens on society (e.g., due to treatment of adverse drug reactions) [1]. To a great extent this variation is based on genetic differences, and indeed many drugs now carry pharmacogenomic labels regarding mandatory or informative genetic tests that have to/can be performed before prescription (http://www.fda.gov/drugs/ scienceresearch/researchareas/pharmacogenetics/ucm083378.htm).Theselabelsarebasedonthe most common allelic variants in germline or somatic genes with importance for drug metabolism that encode phase I or phase II enzymes, transporters, or drug targets. In many cases, particularly in oncology, these labels are major determinants of successful treatment. However, the question arises of to what extent these labels are useful for future precision medicine encompassing specific patients carrying mutations not commonly seen in the whole population.


July 7, 2019  |  

Implementation of pharmacogenomics in everyday clinical settings.

Currently, germline pharmacogenomics (PGx) is successfully implemented within certain specialties in clinical care. With the integration of PGx in pharmacotherapy multiple stakeholders are involved, which are identified in this chapter. Clinically relevant pharmacogenes with their related PGx test are discussed, along with diagnostic test criteria to guide clinicians and policy makers in PGx test selection. The chapter further reviews the similarities and the differences between the guidelines of the Dutch Pharmacogenetics Working Group and the Clinical Pharmacogenetics Implementation Consortium which both support healthcare professionals in understanding PGx test results and help guiding pharmacotherapy by providing evidence-based dosing recommendations. Finally, clinical studies which provide scientific evidence and information on cost-effectiveness supporting clinical implementation of PGx in clinical care are discussed along with the remaining barriers for adoption of PGx testing by healthcare professionals.© 2018 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.