Menu
July 7, 2019  |  

One complete and three draft genome sequences of four Brochothrix thermosphacta strains, CD 337, TAP 175, BSAS1 3 and EBP 3070.

Brochothrix thermosphacta is one of the dominant bacterial species associated with spoilage of chilled meat and seafood products through the production of various metabolites responsible for off-odors. However, metabolic pathways leading to meat and seafood spoilage are not all well known. The production of spoiling molecules seems to depend both on strains and on food matrix. Several B. thermosphacta genome sequences have been reported, all issued from meat isolates. Here, we report four genome sequences, one complete and three as drafts. The four B. thermosphacta strains CD 337, TAP 175, BSAS1 3, and EBP 3070 were isolated from different ecological niches (seafood or meat products either spoiled or not and bovine slaughterhouse). These strains known as phenotypically and genetically different were selected to represent intraspecies diversity. CD 337 genome is 2,594,337 bp long, complete and circular, containing 2593 protein coding sequences and 28 RNA genes. TAP 175, BSAS1 3, and EBP 3070 genomes are arranged in 57, 83, and 71 contigs, containing 2515, 2668, and 2611 protein-coding sequences, respectively. These genomes were compared with two other B. thermosphacta complete genome sequences. The main genome content differences between strains are phages, plasmids, restriction/modification systems, and cell surface functions, suggesting a similar metabolic potential but a different niche adaptation capacity.


July 7, 2019  |  

Complete genome sequence of the Arcobacter mytili type strain LMG 24559

Multiple Arcobacter species have been recovered from fresh and con- taminated waters, marine environments, and shellfish. Arcobacter mytili was recov- ered in 2006 from mussels collected from the Ebro River delta in Catalonia, Spain. This study describes the complete whole-genome sequence of the A. mytili type strain LMG 24559 (=F2075T=CECT 7386T).


July 7, 2019  |  

Complete genome sequence of Bordetella sp. HZ20 sheds light on the ecological role of bacterium without algal-polysaccharides degrading abilities in the brown seaweed-abundant environment

Bordetella sp. HZ20 was isolated from the surface of brown seaweed (Laminaria japonica) and absence of the abilities to decompose the brown seaweed. The genome of Bordetella sp. HZ20 was sequenced and comprised of one circular chromosome with the size of 4,227,194?bp and DNA G?+?C content of 55.5%. Genomic annotation showed that, Bordetella sp. HZ20 may have chitin degradation related enzymes, heparin-sulfate lyase-like protein and enzymes related to the synthase and utilization of polyhydroxyalkanoate for carbon utilization, nitrate and nitrite reductase, glutamate dehydrogenase, glutamate synthase and glutamine synthetase for nitrogen cycle, polyphosphate kinases (pkk1 and pkk2), the high-affinity phosphate-specific transport (Pst) system and the low-affinity inorganic phosphate transporter (pitA) for phosphorus cycle, cysteine synthase and type III acyl coenzyme A transferase (dddD) for sulfur cycle. These features indicated the metabolic patterns of Bordetella sp. HZ20 in C, N, P and S cycles. In addition, the predicted Pst system and cysteine synthase were also related to biofilm formation which showed the potential pathogenicity of Bordetella sp. HZ20 to the cells of animals or plants. This study provides evidences about the metabolic patterns of Bordetella sp. HZ20 and broadens our understandings about ecological roles of bacterium without algal-polysaccharides degrading abilities in the brown seaweed-abundant environment.


July 7, 2019  |  

Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity.

Rhodobacter sphaeroides consists of two chromosomes and many plasmids and incorporates many environmentally important functional gene. Rhodobacter sphaeroides MBTLJ-8 was derived from R. sphaeroides 2.4.1 using chemical mutagenesis and is characterized by enhanced production of physiological active compounds as well as improved carbon dioxide reduction capacity. We reported the complete genome sequence and characteristics based on genomic information of this bacteria. Therefore, this genome sequence provides elucidation for improved CO2 fixation and enhanced physiological active compounds production, and will be used as the efficient photosynthetic bacteria for the biological CO2 reduction system. Copyright © 2018 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of the endophytic bacterium Chryseobacterium indologenes PgBE177, isolated from Panax quinquefolius.

Chryseobacterium indologenes PgBE177, isolated from the root tissue of a 4-year-old Panax quinquefolius plant, showed antagonistic activity against Pseu- domonas syringae pv. tomato DC3000, a bacterial pathogen. Here, we report the whole-genome sequence of C. indologenes PgBE177. The bacterium contains bacteri- ocin gene clusters and has the potential to stimulate plant growth.


July 7, 2019  |  

Complete genome sequences of three Leptospira mayottensis strains from tenrecs that are endemic in the Malagasy region

Leptospirosis is a zoonosis caused by Leptospira, a diversified genus containing more than 10 pathogenic species. Tenrecs are small terrestrial mammals endemic in the Malagasy region and are known to be reservoirs of the recently de- scribed species Leptospira mayottensis. We report the complete genome sequences of three L. mayottensis strains isolated from two tenrec species.


July 7, 2019  |  

Complete genome sequence of the Arcobacter ellisii type strain LMG 26155.

Arcobacter spp. are highly prevalent in contaminated environmental wa- ters and have been recovered from both freshwater and seawater, with several spe- cies isolated from shellfish. Arcobacter ellisii was recovered from mussels collected in Catalonia, Spain. This study describes the whole-genome sequence of the A. ellisii type strain LMG 26155 (?F79-6T?CECT 7837T).


July 7, 2019  |  

Complete genome sequence of the Arcobacter marinus type strain JCM 15502.

Arcobacter species are often recovered from marine environments and are isolated from both seawater and shellfish. Arcobacter marinus was recovered from the homogenate of a sample containing surface seawater, seaweed, and a star- fish. This study describes the whole-genome sequence of the A. marinus type strain JCM 15502 (= CL-S1T = KCCM 90072T).


July 7, 2019  |  

Complete genome sequence of lanthionine-producing Lactobacillus brevis strain 100D8, generated by PacBio sequencing.

Lactobacillus brevis strain 100D8 was isolated from rye silage and showed rapid acidification ability in vitro and antifungal activity against mycotoxin- producing fungi. We report here the complete genome sequence of L. brevis strain 100D8, which has a circular chromosome (2,351,988 bp, 2,304 coding sequences [CDSs]) and three plasmids (45,061 bp, 57 CDSs; 40,740 bp, 40 CDSs; and 39,943 bp, 57 CDSs).


July 7, 2019  |  

Complete genome sequence of the Arcobacter molluscorum type strain LMG 25693.

As components of freshwater and marine microflora, Arcobacter spp. are often recovered from shellfish, such as mussels, clams, and oysters. Arcobacter mol- luscorum was isolated from mussels from the Ebro Delta in Catalonia, Spain. This ar- ticle describes the whole-genome sequence of the A. molluscorum strain LMG 25693T(= F98-3T= CECT 7696T).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.