Menu
July 7, 2019  |  

Complete genome sequences of two geographically distinct Legionella micdadei clinical isolates.

Legionella is a highly diverse genus of intracellular bacterial pathogens that cause Legionnaire’s disease (LD), an often severe form of pneumonia. Two L. micdadei sp. clinical isolates, obtained from patients hospitalized with LD from geographically distinct areas, were sequenced using PacBio SMRT cell technology, identifying incomplete phage regions, which may impact virulence. Copyright © 2017 Osborne et al.


July 7, 2019  |  

High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.

Clostridioides difficile (formerly Clostridium difficile) is a major nosocomial pathogen with an increasing number of community-acquired infections causing symptoms from mild diarrhea to life-threatening colitis. The pathogenicity of C. difficile is considered to be mainly associated with the production of genome-encoded toxins A and B. In addition, some strains also encode and express the binary toxin CDT. However; a large number of non-toxigenic C. difficile strains have been isolated from the human gut and the environment. In this study, we characterized the growth behavior, motility and fermentation product formation of 17 different C. difficile isolates comprising five different major genomic clades and five different toxin inventories in relation to the C. difficile model strains 630?erm and R20291. Within 33 determined fermentation products, we identified two yet undescribed products (5-methylhexanoate and 4-(methylthio)-butanoate) of C. difficile. Our data revealed major differences in the fermentation products obtained after growth in a medium containing casamino acids and glucose as carbon and energy source. While the metabolism of branched chain amino acids remained comparable in all isolates, the aromatic amino acid uptake and metabolism and the central carbon metabolism-associated fermentation pathways varied strongly between the isolates. The patterns obtained followed neither the classification of the clades nor the ribotyping patterns nor the toxin distribution. As the toxin formation is strongly connected to the metabolism, our data allow an improved differentiation of C. difficile strains. The observed metabolic flexibility provides the optimal basis for the adaption in the course of infection and to changing conditions in different environments including the human gut. Copyright © 2017 Elsevier GmbH. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Dolosigranulum pigrum from a patient with interstitial lung disease using single-molecule real-time sequencing technology.

The whole genome sequence of Dolosigranulum pigrum isolated from the blood of a patient with interstitial lung disease was sequenced with the Pacific Biosciences RS II platform. The genome size is 2.1 Mb with 2,127 annotated coding sequences; it contained two clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems. Copyright © 2017 Mukhopadhyay et al.


July 7, 2019  |  

Zinc resistance within swine associated methicillin resistant staphylococcus aureus (MRSA) Isolates in the USA is associated with MLST lineage.

Zinc resistance in livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) sequence type (ST) 398 is primarily mediated by the czrC gene co-located with the mecA gene, encoding methicillin resistance, within the type V SCCmec element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of in feed zinc as an antidiarrheal agent has the potential to contribute to the emergence and spread of MRSA in swine through increased selection pressure to maintain the SCCmec element in isolates obtained from pigs. In this study we report the prevalence of the czrC gene and phenotypic zinc resistance in US swine associated LA-MRSA ST5 isolates, MRSA ST5 isolates from humans with no swine contact, and US swine associated LA-MRSA ST398 isolates. We demonstrate that the prevalence of zinc resistance in US swine associated LA-MRSA ST5 isolates was significantly lower than the prevalence of zinc resistance in MRSA ST5 isolates from humans with no swine contact, swine associated LA-MRSA ST398 isolates, and previous reports describing zinc resistance in other LA-MRSA ST398 isolates. Collectively our data suggest that selection pressure associated with zinc supplementation in feed is unlikely to have played a significant role in the emergence of LA-MRSA ST5 in the US swine population. Additionally, our data indicate that zinc resistance is associated with MLST lineage suggesting a potential link between genetic lineage and carriage of resistance determinants.Importance Our data suggest that coselection thought to be associated with the use of zinc in feed as an antimicrobial agent is not playing a role in the emergence of livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) ST5 in the US swine population. Additionally, our data indicate that zinc resistance is more associated with multi locus sequence type (MLST) lineage suggesting a potential link between genetic lineage and carriage of resistance markers. This information is important to public health professionals, veterinarians, producers, and consumers. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete genome sequence of a Legionella longbeachae serogroup 1 strain isolated from a patient with Legionnaires’ disease.

Legionella longbeachae serogroup 1, predominantly found in soil and composted plant material, causes the majority of cases of Legionnaires’ disease (LD) in New Zealand. Here, we report the complete genome sequence of an L. longbeachae serogroup 1 (sg1) isolate derived from a patient hospitalized with LD in Christchurch, New Zealand. Copyright © 2017 Slow et al.


July 7, 2019  |  

Comparative genomic and phylogenetic analysis of a toxigenic clinical isolate of Corynebacterium diphtheriae strain B-D-16-78 from Malaysia.

In this study, we report the comparative genomics and phylogenetic analysis of Corynebacterium diphtheriae strain B-D-16-78 that was isolated from a clinical specimen in 2016. The complete genome of C. diphtheriae strain B-D-16-78 was sequenced using PacBio Single Molecule, Real-Time sequencing technology and consists of a 2,474,151-bp circular chromosome with an average GC content of 53.56%. The core genome of C. diphtheriae was also deduced from a total of 74 strains with complete or draft genome sequences and the core genome-based phylogenetic analysis revealed close genetic relationship among strains that shared the same MLST allelic profile. In the context of CRISPR-Cas system, which confers adaptive immunity against re-invading DNA, 73 out of 86 spacer sequences were found to be unique to Malaysian strains which harboured only type-II-C and/or type-I-E-a systems. A total of 48 tox genes which code for the diphtheria toxin were retrieved from the 74 genomes and with the exception of one truncated gene, only nucleotide substitutions were detected when compared to the tox gene sequence of PW8. More than half were synonymous substitution and only two were nonsynonymous substitutions whereby H24Y was predicted to have a damaging effect on the protein function whilst T262V was predicted to be tolerated. Both toxigenic and non-toxigenic toxin-gene bearing strains have been isolated in Malaysia but the repeated isolation of toxigenic strains with the same MLST profile suggests the possibility of some of these strains may be circulating in the population. Hence, efforts to increase herd immunity should be continued and supported by an effective monitoring and surveillance system to track, manage and control outbreak of cases. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network.

Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3′-5′)-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world-the input stimuli-into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility-the output phenotypes. How does the ‘uninformed’ process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory experiments we propose a mathematical model where the c-di-GMP network is analogous to a machine learning classifier. The analogy immediately suggests a mechanism for learning through evolution: adaptation though incremental changes in c-di-GMP network proteins acquires knowledge from past experiences and enables bacteria to use it to direct future behaviors. Our model clarifies the elusive function of the ubiquitous c-di-GMP network, a key regulator of bacterial social traits associated with virulence. More broadly, the link between evolution and machine learning can help explain how natural selection across fluctuating environments produces networks that enable living organisms to make sophisticated decisions.


July 7, 2019  |  

Analysis of resistance genes in pan-resistant Myroides odoratimimus clinical strain PR63039 using whole genome sequencing.

To clarify the antibiotic resistance mechanisms of Myroides odoratimimus, pan-resistant M. odoratimimus strain PR63039 was isolated and its genome sequenced and analyzed. Antimicrobial susceptibility testing was conducted using the Kirby-Bauer disk diffusion method, and the Phoenix-100 Automated Microbiology System with a NMIC/ID-4 panel including aminoglycosides, ß-lactams, polypeptides, quinolones, sulfonamides, chloramphenicols, and tetracyclines. Single-molecule real-time whole genome sequencing was conducted using the PacBio RSII system, and genome annotation was performed using RAST and IMG ER. To characterize the genome features, a number of databases and software programs, including GC-Profile, CG viewer, the VFDB database, ISfinder, RADB, CARD, ResFinder, and PHAST, were used. M. odoratimimus isolate PR63039 was resistant to almost all antibiotics tested, suggesting pan-drug resistance. The genome consisted of a 4,366,950-bp chromosome and a 90,798-bp plasmid (p63039), which contained a large number of resistance genes and virulence factors. The distribution of the resistance genes was distinctive, and a resistance region, designated MY63039-RR, was identified. RAST analysis indicated that 108 of the annotated genes were potentially involved in virulence, disease, and defense, all of which could be associated with resistance and pathogenicity. Prophage analysis also identified two incomplete prophages in the genome of M. odoratimimus PR63039. Multiple antibiotic-resistance genes were identified, including those associated with resistance to tetracycline (tetX), macrolides (ereB, cfrA, lasE), sulfonamides (sul2, sul3), ß-lactams (blaMUS-1, blaTUS-1, blaSFB-1, blaSLB-1, blaOXA-209, blaOXA-347), and chloramphenicol (cat). Further, the presence of 18 antibiotic efflux pump-encoding resistance genes, including acrB, acrD, acrF, adeB, adeG, adeJ, amrB, ceoB, cmeB, mdsB, mexB, mexD, mexF, mtrD, smeE, mdtF, macB, likely accounts for the observed quinolone resistance of strain PR63039. To the best of our knowledge, this is the first report of the presence of the blaSFB-1, blaSLB-1, blaOXA-209, blaOXA-347, and tetX resistance genes in M. odoratimimus. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

CTX-M-15-producing Shewanella sp. clinical isolate expressing OXA-535, a chromosome-encoded OXA-48 variant, putative progenitor of the plasmid-encoded OXA-436.

Shewanella spp. constitute a reservoir of antibiotic resistance determinants. In a bile sample, we have identified three Extended Spectrum ß-lactamase (ESBL)-producing bacteria (Escherichia coli, Klebsiella pneumoniae and Shewanella sp. JAB-1) isolated from a child suffering from cholangitis. Our objectives were to characterize the genome and the resistome of the first ESBL-producing isolate of the genus Shewanella and determine whether plasmidic exchange occurred between the three-bacterial species. Bacterial isolates were characterized using MALDI-TOF, standard biochemical tools and antimicrobial susceptibility testing. Shewanella sp JAB-1 and ESBL gene-carrying plasmids were characterized using PacBio and Illumina whole genome sequencing, respectively. The Shewanella sp JAB-1 chromosome-encoded OXA-48-variant was cloned and functionally characterized.Whole genome sequencing (WGS) of the Shewanella sp. clinical isolate JAB-1 revealed the presence of a 193-kb plasmid belonging to IncA/C incompatibility group and harboring two ESBL genes: blaCTX-M-15 and blaSHV-2ablaCTX-M-15 gene carrying plasmids belonging to IncY and IncR incompatibility groups were also found in the E. coli and K. pneumoniae isolates from the same patient, respectively. Comparison of the blaCTX-M-15 genetic environment indicated the independent origin of these plasmids and dismissed in vivo transfers. Furthermore, characterization of the resistome of Shewanella sp. JAB-1 revealed the presence of a chromosome-encoded blaOXA-535 gene, likely the progenitor of the plasmid-encoded blaOXA-436 gene, a novel blaOXA-48-like gene. Expression of blaOXA-535 in E. coli showed the carbapenem-hydrolyzing activity of OXA-535. The production of OXA-535 in Shewanella sp. JAB-1 could be evidenced using molecular and immuno-enzymatic tests, but not with biochemical tests that monitor carbapenem-hydrolysis. In this study, we have identified a CTX-M-15-producing Shewanella species that was responsible of an hepatobiliary infection and that is likely the progenitor of OXA-436, a novel plasmid-encoded OXA-48-like class D carbapenemases. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete genome sequence of Acinetobacter baumannii XH386 (ST208), a multi-drug resistant bacteria isolated from pediatric hospital in China.

Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR), while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb) chromosome and 112-kb plasmid of A. baumannii XH386 (ST208), which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780.


July 7, 2019  |  

Whole genome sequence of the emerging oomycete pathogen Pythium insidiosum strain CDC-B5653 isolated from an infected human in the USA

Pythium insidiosum ATCC 200269 strain CDC-B5653, an isolate from necrotizing lesions on the mouth and eye of a 2-year-old boy in Memphis, Tennessee, USA, was sequenced using a combination of Illumina MiSeq (300 bp paired-end, 14 millions reads) and PacBio (10 Kb fragment library, 356,001 reads). The sequencing data were assembled using SPAdes version 3.1.0, yielding a total genome size of 45.6 Mb contained in 8992 contigs, N50 of 13 Kb, 57% G + C content, and 17,867 putative protein-coding genes. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRHR00000000.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.