Menu
July 19, 2019  |  

Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape.

Despite antiretroviral therapy, HIV-1 persists in memory CD4(+) T cells, creating a barrier to cure. The majority of HIV-1 proviruses are defective and considered clinically irrelevant. Using cells from HIV-1-infected individuals and reconstructed patient-derived defective proviruses, we show that defective proviruses can be transcribed into RNAs that are spliced and translated. Proviruses with defective major splice donors (MSDs) can activate novel splice sites to produce HIV-1 transcripts, and cells with these proviruses can be recognized by HIV-1-specific cytotoxic T lymphocytes (CTLs). Further, cells with proviruses containing lethal mutations upstream of CTL epitopes can also be recognized by CTLs, potentially through aberrant translation. Thus, CTLs may change the landscape of HIV-1 proviruses by preferentially targeting cells with specific types of defective proviruses. Additionally, the expression of defective proviruses will need to be considered in the measurement of HIV-1 latency reversal. Copyright © 2017 Elsevier Inc. All rights reserved.


July 19, 2019  |  

Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.


July 19, 2019  |  

Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade.

Pregnancy associated malaria (PAM) causes adverse pregnancy and birth outcomes owing to Plasmodium falciparum accumulation in the placenta. Placental accumulation is mediated by P. falciparum protein VAR2CSA, a leading PAM-specific vaccine target. The extent of its antigen diversity and impact on clinical outcomes remain poorly understood. Through amplicon deep-sequencing placental malaria samples from women in Malawi and Benin, we assessed sequence diversity of VAR2CSA’s ID1-DBL2x region, containing putative vaccine targets and estimated associations of specific clades with adverse birth outcomes. Overall, var2csa diversity was high and haplotypes subdivided into five clades, the largest two defined by homology to parasites strains, 3D7 or FCR3. Across both cohorts, compared to women infected with only FCR3-like variants, women infected with only 3D7-like variants delivered infants with lower birthweight (difference: -267.99?g; 95% Confidence Interval [CI]: -466.43?g,-69.55?g) and higher odds of low birthweight (<2500?g) (Odds Ratio [OR] 5.41; 95% CI:0.99,29.52) and small-for-gestational-age (OR: 3.65; 95% CI: 1.01,13.38). In two distinct malaria-endemic African settings, parasites harboring 3D7-like variants of VAR2CSA were associated with worse birth outcomes, supporting differential effects of infection with specific parasite strains. The immense diversity coupled with differential clinical effects of this diversity suggest that an effective VAR2CSA-based vaccine may require multivalent activity.


July 19, 2019  |  

A novel approach using long-read sequencing and ddPCR to investigate gonadal mosaicism and estimate recurrence risk in two families with developmental disorders.

De novo mutations contribute significantly to severe early-onset genetic disorders. Even if the mutation is apparently de novo, there is a recurrence risk due to parental germ line mosaicism, depending on in which gonadal generation the mutation occurred.We demonstrate the power of using SMRT sequencing and ddPCR to determine parental origin and allele frequencies of de novo mutations in germ cells in two families whom had undergone assisted reproduction.In the first family, a TCOF1 variant c.3156C>T was identified in the proband with Treacher Collins syndrome. The variant affects splicing and was determined to be of paternal origin. It was present in <1% of the paternal germ cells, suggesting a very low recurrence risk. In the second family, the couple had undergone several unsuccessful pregnancies where a de novo mutation PTPN11 c.923A>C causing Noonan syndrome was identified. The variant was present in 40% of the paternal germ cells suggesting a high recurrence risk.Our findings highlight a successful strategy to identify the parental origin of mutations and to investigate the recurrence risk in couples that have undergone assisted reproduction with an unknown donor or in couples with gonadal mosaicism that will undergo preimplantation genetic diagnosis.© 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


July 19, 2019  |  

ALF: a strategy for identification of unauthorized GMOs in complex mixtures by a GW-NGS method and dedicated bioinformatics analysis.

The majority of feed products in industrialised countries contains materials derived from genetically modified organisms (GMOs). In parallel, the number of reports of unauthorised GMOs (UGMOs) is gradually increasing. There is a lack of specific detection methods for UGMOs, due to the absence of detailed sequence information and reference materials. In this research, an adapted genome walking approach was developed, called ALF: Amplification of Linearly-enriched Fragments. Coupling of ALF to NGS aims for simultaneous detection and identification of all GMOs, including UGMOs, in one sample, in a single analysis. The ALF approach was assessed on a mixture made of DNA extracts from four reference materials, in an uneven distribution, mimicking a real life situation. The complete insert and genomic flanking regions were known for three of the included GMO events, while for MON15985 only partial sequence information was available. Combined with a known organisation of elements, this GMO served as a model for a UGMO. We successfully identified sequences matching with this organisation of elements serving as proof of principle for ALF as new UGMO detection strategy. Additionally, this study provides a first outline of an automated, web-based analysis pipeline for identification of UGMOs containing known GM elements.


July 19, 2019  |  

Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline.

The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.© 2017 John Wiley & Sons Ltd.


July 19, 2019  |  

A comparative study on the characterization of hepatitis B virus quasispecies by clone-based sequencing and third-generation sequencing.

Hepatitis B virus (HBV) has a high mutation rate due to the extremely high replication rate and the proofreading deficiency during reverse transcription. The generated variants with genetic heterogeneity are described as viral quasispecies (QS). Clone-based sequencing (CBS) is thought to be the ‘gold standard’ for assessing QS complexity and diversity of HBV, but an important issue about CBS is cost-effectiveness and laborious. In this study, we investigated the utility of the third-generation sequencing (TGS) DNA sequencing to characterize genetic heterogeneity of HBV QS and assessed the possible contribution of TGS technology in HBV QS studies. Parallel experiments including 3 control samples, which consisted of HBV full gene genotype B and genotype C plasmids, and 10 patients samples were performed by using CBS and TGS to analyze HBV whole-genome QS. Characterization of QS heterogeneity was conducted by using comprehensive statistical analysis. The results showed that TGS had a high consistency with CBS when measuring the complexity and diversity of QS. In addition, to detect rare variants, there were strong advantages conferred by TGS. In summary, TGS was considered to be practicable in HBV QS studies and it might have a relevant role in the clinical management of HBV infection in the future.


July 19, 2019  |  

Pacific Biosciences sequencing and IMGT/HighV-QUEST analysis of full-length single chain fragment variable from an in vivo selected phage-display combinatorial Library.

Phage-display selection of immunoglobulin (IG) or antibody single chain Fragment variable (scFv) from combinatorial libraries is widely used for identifying new antibodies for novel targets. Next-generation sequencing (NGS) has recently emerged as a new method for the high throughput characterization of IG and T cell receptor (TR) immune repertoires bothin vivoandin vitro. However, challenges remain for the NGS sequencing of scFv from combinatorial libraries owing to the scFv length (>800?bp) and the presence of two variable domains [variable heavy (VH) and variable light (VL) for IG] associated by a peptide linker in a single chain. Here, we show that single-molecule real-time (SMRT) sequencing with the Pacific Biosciences RS II platform allows for the generation of full-length scFv reads obtained from anin vivoselection of scFv-phages in an animal model of atherosclerosis. We first amplified the DNA of the phagemid inserts from scFv-phages eluted from an aortic section at the third round of thein vivoselection. From this amplified DNA, 450,558 reads were obtained from 15 SMRT cells. Highly accurate circular consensus sequences from these reads were generated, filtered by quality and then analyzed by IMGT/HighV-QUEST with the functionality for scFv. Full-length scFv were identified and characterized in 348,659 reads. Full-length scFv sequencing is an absolute requirement for analyzing the associated VH and VL domains enriched during thein vivopanning rounds. In order to further validate the ability of SMRT sequencing to provide high quality, full-length scFv sequences, we tracked the reads of an scFv-phage clone P3 previously identified by biological assays and Sanger sequencing. Sixty P3 reads showed 100% identity with the full-length scFv of 767?bp, 53 of them covering the whole insert of 977?bp, which encompassed the primer sequences. The remaining seven reads were identical over a shortened length of 939?bp that excludes the vicinity of primers at both ends. Interestingly these reads were obtained from each of the 15 SMRT cells. Thus, the SMRT sequencing method and the IMGT/HighV-QUEST functionality for scFv provides a straightforward protocol for characterization of full-length scFv from combinatorial phage libraries.


July 19, 2019  |  

Highly sensitive detection of mutations in CHO cell recombinant DNA using multi-parallel single molecule real-time DNA sequencing.

High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ~40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5?kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process.© 2018 Wiley Periodicals, Inc.


July 19, 2019  |  

Sensitive detection of mitochondrial DNA variants for analysis of mitochondrial DNA-enriched extracts from frozen tumor tissue.

Large variation exists in mitochondrial DNA (mtDNA) not only between but also within individuals. Also in human cancer, tumor-specific mtDNA variation exists. In this work, we describe the comparison of four methods to extract mtDNA as pure as possible from frozen tumor tissue. Also, three state-of-the-art methods for sensitive detection of mtDNA variants were evaluated. The main aim was to develop a procedure to detect low-frequent single-nucleotide mtDNA-specific variants in frozen tumor tissue. We show that of the methods evaluated, DNA extracted from cytosol fractions following exonuclease treatment results in highest mtDNA yield and purity from frozen tumor tissue (270-fold mtDNA enrichment). Next, we demonstrate the sensitivity of detection of low-frequent single-nucleotide mtDNA variants (=1% allele frequency) in breast cancer cell lines MDA-MB-231 and MCF-7 by single-molecule real-time (SMRT) sequencing, UltraSEEK chemistry based mass spectrometry, and digital PCR. We also show de novo detection and allelic phasing of variants by SMRT sequencing. We conclude that our sensitive procedure to detect low-frequent single-nucleotide mtDNA variants from frozen tumor tissue is based on extraction of DNA from cytosol fractions followed by exonuclease treatment to obtain high mtDNA purity, and subsequent SMRT sequencing for (de novo) detection and allelic phasing of variants.


July 19, 2019  |  

A high-throughput approach for identification of nontuberculous mycobacteria in drinking water reveals relationship between water age and Mycobacterium avium.

Nontuberculous mycobacteria (NTM) frequently detected in drinking water (DW) include species associated with human infections, as well as species rarely linked to disease. Methods for improved the recovery of NTM DNA and high-throughput identification of NTM are needed for risk assessment of NTM infection through DW exposure. In this study, different methods of recovering bacterial DNA from DW were compared, revealing that a phenol-chloroform DNA extraction method yielded two to four times as much total DNA and eight times as much NTM DNA as two commercial DNA extraction kits. This method, combined with high-throughput, single-molecule real-time sequencing of NTMrpoBgenes, allowed the identification of NTM to the species, subspecies, and (in some cases) strain levels. This approach was applied to DW samples collected from 15 households serviced by a chloraminated distribution system, with homes located in areas representing short (<24 h) and long (>24 h) distribution system residence times. Multivariate statistical analysis revealed that greater water age (i.e., combined distribution system residence time and home plumbing stagnation time) was associated with a greater relative abundance ofMycobacterium aviumsubsp.avium, one of the most prevalent NTM causing infections in humans. DW from homes closer to the treatment plant (with a shorter water age) contained more diverse NTM species, includingMycobacterium abscessusandMycobacterium chelonaeOverall, our approach allows NTM identification to the species and subspecies levels and can be used in future studies to assess the risk of waterborne infection by providing insight into the similarity between environmental and infection-associated NTM.IMPORTANCEAn extraction method for improved recovery of DNA from nontuberculous mycobacteria (NTM), combined with single-molecule real-time sequencing (PacBio) of NTMrpoBgenes, was used for high-throughput characterization of NTM species and in some cases strains in drinking water (DW). The extraction procedure recovered, on average, eight times as much NTM DNA and three times as much total DNA from DW as two widely used commercial DNA extraction kits. The combined DNA extraction and sequencing approach allowed high-throughput screening of DW samples to identify NTM, revealing that the relative abundance ofMycobacterium aviumsubsp.aviumincreased with water age. Furthermore, the two-step barcoding approach developed as part of the PacBio sequencing method makes this procedure highly adaptable, allowing it to be used for other target genes and species. Copyright © 2018 Haig et al.


July 19, 2019  |  

Coupling of single molecule, long read sequencing with IMGT/HighV-QUEST analysis expedites identification of SIV gp140-specific antibodies from scFv phage display libraries.

The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system®(IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9-25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.


July 19, 2019  |  

Biomonitoring for traditional herbal medicinal products using DNA metabarcoding and single molecule, real-time sequencing.

Global concerns have been paid to the potential hazard of traditional herbal medicinal products (THMPs). Substandard and counterfeit THMPs, including traditional Chinese patent medicine, health foods, dietary supplements, etc. are potential threats to public health. Recent marketplace studies using DNA barcoding have determined that the current quality control methods are not sufficient for ensuring the presence of authentic herbal ingredients and detection of contaminants/adulterants. An efficient biomonitoring method for THMPs is of great needed. Herein, metabarcoding and single-molecule, real-time (SMRT) sequencing were used to detect the multiple ingredients in Jiuwei Qianghuo Wan (JWQHW), a classical herbal prescription widely used in China for the last 800 years. Reference experimental mixtures and commercial JWQHW products from the marketplace were used to confirm the method. Successful SMRT sequencing results recovered 5416 and 4342 circular-consensus sequencing (CCS) reads belonging to the ITS2 and psbA-trnH regions. The results suggest that with the combination of metabarcoding and SMRT sequencing, it is repeatable, reliable, and sensitive enough to detect species in the THMPs, and the error in SMRT sequencing did not affect the ability to identify multiple prescribed species and several adulterants/contaminants. It has the potential for becoming a valuable tool for the biomonitoring of multi-ingredient THMPs.


July 19, 2019  |  

The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms.

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.


July 19, 2019  |  

Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper.

Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.