With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.
Single Molecule, Real-Time (SMRT) Sequencing on the Sequel II System enables easy and affordable generation of high-quality de novo assemblies. With megabase size contig N50s, accuracies >99.99%, and phased haplotypes, you can do more biology – capturing undetected SNVs, fully intact genes, and regulatory elements embedded in complex regions.
Highly accurate long reads – HiFi reads – with single-molecule resolution make Single Molecule, Real-Time (SMRT) Sequencing ideal for full-length 16S rRNA sequencing, shotgun metagenomic profiling, and metagenome assembly.
With the PacBio no-amplification (No-Amp) targeted sequencing method, you can now sequence through previously inaccessible regions of the genome to provide base-level resolution of disease-causing repeat expansions. By combining the CRISPR-Cas9 enrichment method with Single Molecule, Real-Time (SMRT) Sequencing on the Sequel Systems you are no longer limited by hard-to-amplify targets.
With SMRT Link you can unlock the power of PacBio Single Molecule, Real-Time (SMRT) Sequencing using our portfolio of software tools designed to set up and monitor sequencing runs, review performance metrics, analyze, visualize, and annotate your sequencing data.
With highly accurate long reads (HiFi reads) from the Sequel IIe System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can efficiently and cost effectively validate gene editing techniques including adeno-associated virus (AAV) and CRISPR-Cas9 approaches.
PacBio’s Jenny Ekholm presents this ASHG 2016 poster on a new method being developed that enriches for unamplified DNA and uses SMRT Sequencing to characterize repeat expansion disorders. Incorporating the CRISPR/Cas9 system to target specific genes allows for amplification-free enrichment to preserve epigenetic information and avoid PCR bias. Internal studies have shown that the approach can successfully be used to target and sequence the CAG repeat responsible for Huntington’s disease, the repeat associated with ALS, and more. The approach allows for pooling many samples and sequencing with a single SMRT Cell.
This tutorial provides an overview of the Circular Consensus Sequence (CCS) analysis application. The CCS algorithm is used in applications that require distinguishing closely related DNA molecules in the same sample. Applications of CCS include profiling microbial communities, resolving viral populations and accurately identifying somatic variations within heterogeneous tumor cells. This tutorial covers features of SMRT Link v5.0.0.
At AGBT 2017, Lars Paulin from the University of Helsinki presented this poster on whole genome sequencing of the virus responsible for progressive multifocal leukoencephalopathy, a rare and dangerous brain infection. His team used long amplicon analysis to resolve the whole virus genome from three patient samples, pooled them for SMRT Sequencing, and identified variants and rearrangements. This work represents the first time the viral genome was sequenced from patients.
PacBio SMRT Sequencing is fast changing the genomics space with its long reads and high consensus sequence accuracy, providing the most comprehensive view of the genome and transcriptome. In this webinar, I will talk about the various data analysis tools available in PacBio’s data analysis suite – SMRT Link – as well as 3rd party tools available. Key applications addressed in this talk are: Genome Assemblies, Structural Variant Analysis, Long Amplicon and Targeted Sequencing, Barcoding Strategies, Iso-Seq Analysis for Full-length Transcript Sequencing
Jonas Korlach closes the 2018 User Group Meeting with an outlook and perspectives on SMRT Sequencing, highlighting what possibilities the Sequel System 6.0 release. Learn more about this release at: https://www.pacb.com/products-and-services/sequel-system/latest-system-release/
PacBio Customers present their latest research in short talks at our User Group Meeting. The applications presented span the range of SMRT Sequencing applications from users from around North America.
In this PacBio User Group Meeting presentation, Garth Ehrlich of Drexel University College of Medicine shares his work on developing a microbiome assay that uses SMRT Sequencing to provide high-quality coverage of the 16S bacterial rRNA for species identification. The microbiome analysis pipeline, MCSMRT, takes advantage of PacBio circular consensus sequencing (CCS) technology and second-generation pathway analysis system for generating extremely high-fidelity sequences that provide the user with ultra-high-confidence species-level microbiome data.
PacBio CSO, Jonas Korlach, kicks off the North America 2018 User Group Meeting with a recap of how SMRT Sequencing has evolved and a preview of the Sequel System 6.0 release. Learn more about this release at: https://www.pacb.com/products-and-services/sequel-system/latest-system-release/