Menu
October 29, 2021  |  

Targeting Clinically Significant Dark Regions of the Human Genome with High-Accuracy, Long-Read Sequencing

There are many clinically important genes in “dark” regions of the human genome. These regions are characterized as dark due to a paucity of NGS coverage as a result of short-read sequencing or mapping difficulties. Low NGS sequencing yield can arise in these regions due to the presence of various repeat elements or biased base composition while inaccurate mapping can result from segmental duplications. Long-read sequencing coupled with an optimized, robust enrichment method has the potential to illuminate these dark regions. 


September 7, 2021  |  

Full-Length Sequencing of CYP2D6 Locus with HiFi Reads Increasing Genotypes Accuracy 

The highly polymorphic CYP2D6 gene impacts the metabolism of 25% of the mostly prescribed drugs. Thus, accurate identification of variant CYP2D6 alleles in individuals is necessary for personalized medicine. PacBio HiFi sequencing produces long and accurate reads to identify variant regions. Here, we describe an end-to-end workflow for the characterization of full-length CYP2D6 by HiFi sequencing. 


September 7, 2021  |  

Targeting Clinically Significant Dark Regions of the Human Genome with High-Accuracy, Long-Read Sequencing

There are many clinically important genes in “dark” regions of the human genome. These regions are characterized as dark due to a paucity of NGS coverage as a result of short-read sequencing or mapping difficulties. Low NGS sequencing yield can arise in these regions due to the presence of various repeat elements or biased base composition while inaccurate mapping can result from segmental duplications. Long-read sequencing coupled with an optimized, robust enrichment method has the potential to illuminate these dark regions. 


August 19, 2021  |  Human genetics research

Whitepaper — Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.