Menu
July 7, 2019

Complete genome sequence of a phthalic acid esters degrading Mycobacterium sp. YC-RL4

Mycobacterium sp. YC-RL4 is capable of utilizing a broad range of phthalic acid esters (PAEs) as sole source of carbon and energy for growth. The preliminary studies demonstrated its high degrading efficiency and good performance during the bioprocess with environmental samples. Here, we present the complete genome of Mycobacterium sp. YC-RL4, which consists of one circular chromosome (5,801,417 bp) and one plasmid (252,568 bp). The genomic analysis and gene annotation were performed and many potential genes responsible for the biodegradation of PAEs were identified from the genome. These results may advance the investigation of bioremediation of PAEs-contaminated environments by strain YC-RL4.


July 7, 2019

Whole genome and core genome multilocus sequence typing and single nucleotide polymorphism analyses of Listeria monocytogenes associated with an outbreak linked to cheese, United States, 2013.

Epidemiological findings of a listeriosis outbreak in 2013 implicated Hispanic-style cheese produced by Company A, and pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed on clinical isolates and representative isolates collected from Company A cheese and environmental samples during the investigation. The results strengthened the evidence for cheese as the vehicle. Surveillance sampling and WGS three months later revealed that the equipment purchased by Company B from Company A yielded an environmental isolate highly similar to all outbreak isolates. The whole genome and core genome multilocus sequence typing and single nucleotide polymorphism (SNP) analyses were compared to demonstrate the maximum discriminatory power obtained by using multiple analyses, which were needed to differentiate outbreak-associated isolates from a PFGE-indistinguishable isolate collected in a non-implicated food source in 2012. This unrelated isolate differed from the outbreak isolates by only 7 to 14 SNPs, and as a result, minimum spanning tree by the whole genome analyses and certain variant calling approach and phylogenetic algorithm for core genome-based analyses could not provide the differentiation between unrelated isolates. Our data also suggest that SNP/allele counts should always be combined with WGS clustering generated by phylogenetically meaningful algorithms on sufficient number of isolates, and SNP/allele threshold alone is not sufficient evidence to delineate an outbreak. The putative prophages were conserved across all the outbreak isolates. All outbreak isolates belonged to clonal complex 5 and serotype 1/2b, had an identical inlA sequence, which did not have premature stop codons.IMPORTANCE In this outbreak, multiple analytical approaches were used for maximum discriminatory power. A PFGE-matched, epidemiologically unrelated isolate had high genetic similarity to the outbreak-associated isolates, with as few as only 7 SNP differences. Therefore, the SNP/allele threshold should not be used as the only evidence to define the scope of an outbreak. It is critical that the SNP/allele counts be complemented by WGS clustering generated by phylogenetically meaningful algorithms to distinguish outbreak-associated isolates from epidemiologically unrelated isolates. Careful selection of a variant calling approach and phylogenetic algorithm is critical for core genome-based analyses. The whole genome-based analyses were able to construct the highly resolved phylogeny needed to support the findings of the outbreak investigation. Ultimately, epidemiologic evidence and multiple WGS analyses should be combined to increase the confidence in outbreak investigations. Copyright © 2017 Chen et al.


July 7, 2019

Complete genome sequences of five representative Staphylococcus aureus ST398 strains from five major sequence heterogeneity groups of a diverse isolate collection.

Staphylococcus aureus sequence type 398 (ST398) is a rapidly emerging livestock-associated strain causing zoonotic disease in humans. The course of pathogen evolution remains unclear, prompting whole-genome comparative studies in attempts to elucidate this issue. We present the full, annotated genomes of five newly isolated representative ST398 strains from five major sequence heterogeneity groups of our diverse isolate collection. Copyright © 2017 McClure and Zhang.


July 7, 2019

Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec).

Several lines of evidence indicate that the most primitive staphylococcal species, those of the Staphylococcus sciuri group, were involved in the first stages of evolution of the staphylococcal cassette chromosome mec (SCCmec), the genetic element carrying the ß-lactam resistance gene mecA However, many steps are still missing from this evolutionary history. In particular, it is not known how mecA was incorporated into the mobile element SCC prior to dissemination among Staphylococcus aureus and other pathogenic staphylococcal species. To gain insights into the possible contribution of several species of the Staphylococcus sciuri group to the assembly of SCCmec, we sequenced the genomes of 106 isolates, comprising S. sciuri (n = 76), Staphylococcus vitulinus (n = 18), and Staphylococcus fleurettii (n = 12) from animal and human sources, and characterized the native location of mecA and the SCC insertion site by using a variety of comparative genomic approaches. Moreover, we performed a single nucleotide polymorphism (SNP) analysis of the genomes in order to understand SCCmec evolution in relation to phylogeny. We found that each of three species of the S. sciuri group contributed to the evolution of SCCmec: S. vitulinus and S. fleurettii contributed to the assembly of the mec complex, and S. sciuri most likely provided the mobile element in which mecA was later incorporated. We hypothesize that an ancestral SCCmec III cassette (an element carried by one of the most epidemic methicillin-resistant S. aureus clones) originated in S. sciuri possibly by a recombination event in a human host or a human-created environment and later was transferred to S. aureus. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Draft genome sequence of Plantibacter flavus strain 251 isolated from a plant growing in a chronically hydrocarbon-contaminated site.

Plantibacter flavus isolate 251 is a bacterial endophyte isolated from an Achillea millefolium plant growing in a natural oil seep soil located in Oil Springs, Ontario, Canada. We present here a draft genome sequence of an infrequently reported genus Plantibacter, highlighting an endophytic lifestyle and biotechnological potential. Copyright © 2017 Lumactud et al.


July 7, 2019

Genetic analysis of Neisseria meningitidis sequence type 7 serogroup X originating from serogroup A.

Neisseria meningitidis causes meningococcal disease, often resulting in fulminant meningitis, sepsis, and death. Vaccination programs have been developed to prevent infection of this pathogen, but serogroup replacement is a problem. Capsular switching has been an important survival mechanism for N. meningitidis, allowing the organism to evolve in the present vaccine era. However, related mechanisms have not been completely elucidated. Genetic analysis of capsular switching between diverse serogroups would help further our understanding of this pathogen. In this study, we analyzed the genetic characteristics of the sequence type 7 (ST-7) serogroup X strain that was predicted to arise from ST-7 serogroup A at the genomic level. By comparing the genomic structures and sequences, ST-7 serogroup X was closest to ST-7 serogroup A, whereas eight probable recombination regions, including the capsular gene locus, were identified. This indicated that serogroup X originated from serogroup A by recombination leading to capsular switching. The recombination involved approximately 8,540 bp from the end of the ctrC gene to the middle of the galE gene. There were more recombination regions and strain-specific single-nucleotide polymorphisms in serogroup X than in serogroup A genomes. However, no specific gene was found for each serogroup except those in the capsule gene locus. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Complete genome sequence of Mycoplasma bovis strain 08M.

Mycoplasma bovis is a major bacterial pathogen that can cause respiratory disease, mastitis, and arthritis in cattle. We report here the complete and annotated genome sequence of M. bovis strain 08M, isolated from a calf lung with pneumonia in China. Copyright © 2017 Chen et al.


July 7, 2019

Antibiotic resistance markers in Burkholderia pseudomallei strain Bp1651 identified by genome sequence analysis.

Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and ß-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A ß-lactamase and was previously implicated in resistance to ß-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Genome sequences for Streptomyces spp. isolated from disease-suppressive soils and long-term ecological research sites.

We report here the high-quality genome sequences of three Streptomyces spp. isolated as part of a long-term study of microbial soil ecology. Streptomyces sp. strain GS93-23 was isolated from naturally disease-suppressive soil (DSS) in Grand Rapids, MN, and Streptomyces sp. strains S3-4 and 3211-3 were isolated from experimental plots in the Cedar Creek Ecosystem Science Reserve (CCESR). Copyright © 2017 Heinsch et al.


July 7, 2019

Transcriptome Remodeling of Acinetobacter baumannii during Infection and Treatment.

Acinetobacter baumannii is an increasingly common multidrug-resistant pathogen in health care settings. Although the genetic basis of antibiotic resistance mechanisms has been extensively studied, much less is known about how genetic variation contributes to other aspects of successful infections. Genetic changes that occur during host infection and treatment have the potential to remodel gene expression patterns related to resistance and pathogenesis. Longitudinal sets of multidrug-resistant A. baumannii isolates from eight patients were analyzed by RNA sequencing (RNA-seq) to identify differentially expressed genes and link them to genetic changes contributing to transcriptional variation at both within-patient and population levels. The number of differentially expressed genes among isolates from the same patient ranged from 26 (patient 588) to 145 (patient 475). Multiple patients had isolates with differential gene expression patterns related to mutations in the pmrAB and adeRS two-component regulatory system genes, as well as significant differences in genes related to antibiotic resistance, iron acquisition, amino acid metabolism, and surface-associated proteins. Population level analysis revealed 39 genetic regions with clade-specific differentially expressed genes, for which 19, 8, and 3 of these could be explained by insertion sequence mobilization, recombination-driven sequence variation, and intergenic mutations, respectively. Multiple types of mutations that arise during infection can significantly remodel the expression of genes that are known to be important in pathogenesis. IMPORTANCE Health care-associated multidrug-resistant Acinetobacter baumannii can cause persistent infections in patients, but bacterial cells must overcome host defenses and antibiotic therapies to do so. Genetic variation arises during host infection, and new mutations are often enriched in genes encoding transcriptional regulators, iron acquisition systems, and surface-associated structures. In this study, genetic variation was shown to result in transcriptome remodeling at the level of individual patients and across phylogenetic groups. Differentially expressed genes include those related to capsule modification, iron acquisition, type I pili, and antibiotic resistance. Population level transcriptional variation reflects genome dynamics over longer evolutionary time periods, and convergent transcriptional changes support the adaptive significance of these regions. Transcriptional changes can be attributed to multiple types of genomic change, but insertion sequence mobilization had a predominant effect. The transcriptional effects of mutations that arise during infection highlight the rapid adaptation of A. baumannii during host exposure. Copyright © 2017 Wright et al.


July 7, 2019

Whole-genome sequence of endophytic plant growth-promoting Escherichia coli USML2.

Escherichia coli strain USML2 was originally isolated from the inner leaf tissues of surface-sterilized phytopathogenic-free oil palm (Elaeis guineensis Jacq.). We present here the whole-genome sequence of this plant-endophytic strain. The genome consists of a single circular chromosome of 4,502,758 bp, 4,315 predicted coding sequences, and a G+C content of 50.8%. Copyright © 2017 Tharek et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.