Menu
July 7, 2019  |  

Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium.

Thalassosaline waters produced by the concentration of seawater are widespread and common extreme aquatic habitats. Their salinity varies from that of sea water (ca. 3.5%) to saturation for NaCl (ca. 37%). Obviously the microbiota varies dramatically throughout this range. Recent metagenomic analysis of intermediate salinity waters (19%) indicated the presence of an abundant and yet undescribed gamma-proteobacterium. Two strains belonging to this group have been isolated from saltern ponds of intermediate salinity in two Spanish salterns and were named “Spiribacter”.The genomes of two isolates of “Spiribacter” have been fully sequenced and assembled. The analysis of metagenomic datasets indicates that microbes of this genus are widespread worldwide in medium salinity habitats representing the first ecologically defined moderate halophile. The genomes indicate that the two isolates belong to different species within the same genus. Both genomes are streamlined with high coding densities, have few regulatory mechanisms and no motility or chemotactic behavior. Metabolically they are heterotrophs with a subgroup II xanthorhodopsin as an additional energy source when light is available.This is the first bacterium that has been proven by culture independent approaches to be prevalent in hypersaline habitats of intermediate salinity (half a way between the sea and NaCl saturation). Predictions from the proteome and analysis of transporter genes, together with a complete ectoine biosynthesis gene cluster are consistent with these microbes having the salt-out-organic-compatible solutes type of osmoregulation. All these features are also consistent with a well-adapted fully planktonic microbe while other halophiles with more complex genomes such as Salinibacter ruber might have particle associated microniches.


July 7, 2019  |  

Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India.

Halolamina pelagica strain CDK2, a halophilic archaeon (growth range 1.36 to 5.12 M NaCl), was isolated from rhizosphere of wild grasses of hypersaline soil of the Rann of Kutch, Gujarat, India. Its draft genome contains 2,972,542 bp and 3,485 coding sequences, depicting genes for halophilic serine proteases and trehalose synthesis. Copyright © 2017 Gaba et al.


July 7, 2019  |  

Adaptive evolution of a hyperthermophilic archaeon pinpoints a formate transporter as a critical factor for the growth enhancement on formate.

Previously, we reported that the hyperthermophilic archaeon Thermococcus onnurineus NA1 could grow on formate and produce H2. Formate conversion to hydrogen was mediated by a formate-hydrogen lyase complex and was indeed a part of chemiosmotic coupling to ATP generation. In this study, we employed an adaptation approach to enhance the cell growth on formate and investigated molecular changes. As serial transfer continued on formate-containing medium at the serum vial, cell growth, H2 production and formate consumption increased remarkably. The 156 times transferred-strain, WTF-156T, was demonstrated to enhance H2 production using formate in a bioreactor. The whole-genome sequencing of the WTF-156T strain revealed eleven mutations. While no mutation was found among the genes encoding formate hydrogen lyase, a point mutation (G154A) was identified in a formate transporter (TON_1573). The TON_1573 (A52T) mutation, when introduced into the parent strain, conferred increase in formate consumption and H2 production. Another adaptive passage, carried out by culturing repeatedly in a bioreactor, resulted in a strain, which has a mutation in TON_1573 (C155A) causing amino acid change, A52E. These results implicate that substitution of A52 residue of a formate transporter might be a critical factor to ensure the increase in formate uptake and cell growth.


July 7, 2019  |  

Identifying potential mechanisms enabling acidophily in the ammonia-oxidising archaeon ‘Candidatus Nitrosotalea devanaterra’.

Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidising archaea (AOA) and bacteria (AOB). AOA are often more abundant than AOB, and dominate activity in acid soils. The mechanism of ammonia oxidation in acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidisers only grew at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidiser ‘Candidatus Nitrosotalea devanaterra’ provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity and lipid content of ‘Ca. N. devanaterra’ reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that ‘Ca. N. devanaterra’ contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding for the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by HPLC-MS demonstrated that the membrane lipids of ‘Ca. N. devanaterra’ were not dominated by crenarchaeol, as found in neutrophilic AOA. This study describes the first genome of an obligately acidophilic ammonia oxidiser and identifies potential mechanisms enabling this unique phenotype for future biochemical characterisation. Copyright © 2016 Lehtovirta-Morley et al.


July 7, 2019  |  

Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis.

The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. In this study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.


July 7, 2019  |  

Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100-300?nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.


July 7, 2019  |  

Draft genome sequence of the extremely halophilic Halorubrum sp. SAH-A6 isolated from rock salts of the Danakil depression, Ethiopia.

The draft genome sequence of Halorubrum sp. SAH-A6, isolated from commercial rock salts of the Danakil depression, Ethiopia. The genome comprised 3,325,770 bp, with the G + C content of 68.0%. The strain has many genes which are responsible for secondary metabolites biosynthesis, transport and catabolism as compared to other Halorubrum archaea members. Abundant genes responsible for numerous transport systems, solute accumulation, and aromatic/sulfur decomposition were detected. The first genomic analysis encourages further research on comparative genomics, and biotechnological applications. The NCBI accession number for this genome is SAMN04278861 and ID: 4278861 and strain deposited with accession number KCTC 43215.


July 7, 2019  |  

Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise.

A novel strictly anaerobic, hyperthermophilic archaeon, designated strain CDGS(T), was isolated from a deep-sea hydrothermal vent in the Cayman Trough at 4964m water depth. The novel isolate is obligate anaerobe and grows chemoorganoheterotrophically with stimulation of growth by sulphur containing compounds. Its growth is optimal at 75°C, pH 6.0 and under a pressure of 50MPa. It possesses the broadest hydrostatic pressure range for growth that has ever been described for a microorganism. Its genomic DNA G+C content is 51.11 mol%. The novel isolate belongs to the genus Thermococcus. Phylogenetic analyses indicated that it is most closely related to Thermococcus barossii DSM17882(T) based on its 16S rRNA gene sequence, and to ‘Thermococcus onnurineus’ NA1 based on its whole genome sequence. The average nucleotide identity scores with these strains are 77.66% for T. barossii and 84.84% for ‘T. onnurineus’, respectively. Based on the draft whole genome sequence and phenotypic characteristics, strain CDGS(T) is suggested to be separated into a novel species within the genus Thermococcus, with proposed name Thermococcus piezophilus (type strain CDGS(T)=ATCC TSD-33(T)=UBOCC 3296(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.