Menu
July 7, 2019

CoLoRMap: Correcting Long Reads by Mapping short reads.

Second generation sequencing technologies paved the way to an exceptional increase in the number of sequenced genomes, both prokaryotic and eukaryotic. However, short reads are difficult to assemble and often lead to highly fragmented assemblies. The recent developments in long reads sequencing methods offer a promising way to address this issue. However, so far long reads are characterized by a high error rate, and assembling from long reads require a high depth of coverage. This motivates the development of hybrid approaches that leverage the high quality of short reads to correct errors in long reads.We introduce CoLoRMap, a hybrid method for correcting noisy long reads, such as the ones produced by PacBio sequencing technology, using high-quality Illumina paired-end reads mapped onto the long reads. Our algorithm is based on two novel ideas: using a classical shortest path algorithm to find a sequence of overlapping short reads that minimizes the edit score to a long read and extending corrected regions by local assembly of unmapped mates of mapped short reads. Our results on bacterial, fungal and insect data sets show that CoLoRMap compares well with existing hybrid correction methods.The source code of CoLoRMap is freely available for non-commercial use at https://github.com/sfu-compbio/colormapehaghshe@sfu.ca or cedric.chauve@sfu.caSupplementary data are available at Bioinformatics online.© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

DNA extraction protocols for whole-genome sequencing in marine organisms.

The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths’ different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.


July 7, 2019

Susan Celniker: Foundational resources to study a dynamic genome.

The Genetics Society of America’s George W. Beadle Award honors individuals who have made outstanding contributions to the community of genetics researchers and who exemplify the qualities of its namesake. The 2016 recipient, Susan E. Celniker, played a key role in the sequencing, annotation, and characterization of the Drosophila genome. She participated in early sequencing efforts at the Lawrence Berkeley National Laboratory and led the modENCODE Fly Transcriptome Consortium. Her efforts were critical to ensuring that the Drosophila genome was well-annotated, making it one of the best curated animal genomes available. As the Principal Investigator for the BDGP, Celniker has enabled the study of proteomes by creating a collection of over 13,000 clones that match annotated genes for protein expression in cells or transgenic flies, and she has established the most comprehensive spatial gene expression atlas in any organism, with in situ imaging of more than 80% of the Drosophila protein-coding transcriptome through embryogenesis. In addition to providing the research community with these invaluable resources and reagents, she continues to develop new tools and datasets for genetics researchers to explore the spatial and temporal control of gene expression.


July 7, 2019

Exploiting next-generation sequencing to solve the haplotyping puzzle in polyploids: a simulation study.

Haplotypes are the units of inheritance in an organism, and many genetic analyses depend on their precise determination. Methods for haplotyping single individuals use the phasing information available in next-generation sequencing reads, by matching overlapping single-nucleotide polymorphisms while penalizing post hoc nucleotide corrections made. Haplotyping diploids is relatively easy, but the complexity of the problem increases drastically for polyploid genomes, which are found in both model organisms and in economically relevant plant and animal species. Although a number of tools are available for haplotyping polyploids, the effects of the genomic makeup and the sequencing strategy followed on the accuracy of these methods have hitherto not been thoroughly evaluated.We developed the simulation pipeline haplosim to evaluate the performance of three haplotype estimation algorithms for polyploids: HapCompass, HapTree and SDhaP, in settings varying in sequencing approach, ploidy levels and genomic diversity, using tetraploid potato as the model. Our results show that sequencing depth is the major determinant of haplotype estimation quality, that 1?kb PacBio circular consensus sequencing reads and Illumina reads with large insert-sizes are competitive and that all methods fail to produce good haplotypes when ploidy levels increase. Comparing the three methods, HapTree produces the most accurate estimates, but also consumes the most resources. There is clearly room for improvement in polyploid haplotyping algorithms.


July 7, 2019

New high copy tandem repeat in the content of the chicken W chromosome.

The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.


July 7, 2019

RepLong: de novo repeat identification using long read sequencing data.

The identification of repetitive elements is important in genome assembly and phylogenetic analyses. The existing de novo repeat identification methods exploiting the use of short reads are impotent in identifying long repeats. Since long reads are more likely to cover repeat regions completely, using long reads is more favorable for recognizing long repeats.In this study, we propose a novel de novo repeat elements identification method namely RepLong based on PacBio long reads. Given that the reads mapped to the repeat regions are highly overlapped with each other, the identification of repeat elements is equivalent to the discovery of consensus overlaps between reads, which can be further cast into a community detection problem in the network of read overlaps. In RepLong, we first construct a network of read overlaps based on pair-wise alignment of the reads, where each vertex indicates a read and an edge indicates a substantial overlap between the corresponding two reads. Secondly, the communities whose intra connectivity is greater than the inter connectivity are extracted based on network modularity optimization. Finally, representative reads in each community are extracted to form the repeat library. Comparison studies on Drosophila melanogaster and human long read sequencing data with genome-based and short-read-based methods demonstrate the efficiency of RepLong in identifying long repeats. RepLong can handle lower coverage data and serve as a complementary solution to the existing methods to promote the repeat identification performance on long-read sequencing data.The software of RepLong is freely available at https://github.com/ruiguo-bio/replong.ywsun@szu.edu.cn or zhuzx@szu.edu.cn.Supplementary data are available at Bioinformatics online.


July 7, 2019

Recent progress and prospects for advancing arachnid genomics

Arachnids exhibit tremendous species richness and adaptations of biomedical, industrial, and agricultural importance. Yet genomic resources for arachnids are limited, with the first few spider and scorpion genomes becoming accessible in the last four years. We review key insights from these genome projects, and recommend additional genomes for sequencing, emphasizing taxa of greatest value to the scientific community. We suggest greater sampling of spiders whose genomes are understudied but hold important protein recipes for silk and venom production. We further recommend arachnid genomes to address significant evolutionary topics, including the phenotypic impact of genome duplications. A barrier to high-quality arachnid genomes are assemblies based solely on short-read data, which may be overcome by long-range sequencing and other emerging methods.


July 7, 2019

Lepidoptera genomes: current knowledge, gaps and future directions.

Butterflies and moths (Lepidoptera) are one of the most ecologically diverse and speciose insect orders. With recent advances in genomics, new Lepidoptera genomes are regularly being sequenced, and many of them are playing principal roles in genomics studies, particularly in the fields of phylo-genomics and functional genomics. Thus far, assembled genomes are only available for <10 of the 43 Lepidoptera superfamilies. Nearly all are model species, found in the speciose clade Ditrysia. Community support for Lepidoptera genomics is growing with successful management and dissemination of data and analytical tools in centralized databases. With genomic studies quickly becoming integrated with ecological and evolutionary research, the Lepidoptera community will unquestionably benefit from new high-quality reference genomes that are more evenly distributed throughout the order. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019

Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000RAD and 15000RAD.

The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RADand 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RADpanel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RADpanel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RADpanel is an important high-resolution complement to the main 5000RADpanel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools.


July 7, 2019

Inferring synteny between genome assemblies: a systematic evaluation.

Genome assemblies across all domains of life are being produced routinely. Initial analysis of a new genome usually includes annotation and comparative genomics. Synteny provides a framework in which conservation of homologous genes and gene order is identified between genomes of different species. The availability of human and mouse genomes paved the way for algorithm development in large-scale synteny mapping, which eventually became an integral part of comparative genomics. Synteny analysis is regularly performed on assembled sequences that are fragmented, neglecting the fact that most methods were developed using complete genomes. It is unknown to what extent draft assemblies lead to errors in such analysis.We fragmented genome assemblies of model nematodes to various extents and conducted synteny identification and downstream analysis. We first show that synteny between species can be underestimated up to 40% and find disagreements between popular tools that infer synteny blocks. This inconsistency and further demonstration of erroneous gene ontology enrichment tests raise questions about the robustness of previous synteny analysis when gold standard genome sequences remain limited. In addition, assembly scaffolding using a reference guided approach with a closely related species may result in chimeric scaffolds with inflated assembly metrics if a true evolutionary relationship was overlooked. Annotation quality, however, has minimal effect on synteny if the assembled genome is highly contiguous.Our results show that a minimum N50 of 1 Mb is required for robust downstream synteny analysis, which emphasizes the importance of gold standard genomes to the science community, and should be achieved given the current progress in sequencing technology.


July 7, 2019

Genome sequence of Galleria mellonella(greater wax moth).

The larvae of the greater wax moth,Galleria mellonella, are pests of active beehives. In infection biology, these larvae are playing a more and more attractive role as an invertebrate host model. Here, we report on the first genome sequence ofGalleria mellonella. Copyright © 2018 Lange et al.


July 7, 2019

Supergene evolution triggered by the introgression of a chromosomal inversion.

Supergenes are groups of tightly linked loci whose variation is inherited as a single Mendelian locus and are a common genetic architecture for complex traits under balancing selection [1-8]. Supergene alleles are long-range haplotypes with numerous mutations underlying distinct adaptive strategies, often maintained in linkage disequilibrium through the suppression of recombination by chromosomal rearrangements [1, 5, 7-9]. However, the mechanism governing the formation of supergenes is not well understood and poses the paradox of establishing divergent functional haplotypes in the face of recombination. Here, we show that the formation of the supergene alleles encoding mimicry polymorphism in the butterfly Heliconius numata is associated with the introgression of a divergent, inverted chromosomal segment. Haplotype divergence and linkage disequilibrium indicate that supergene alleles, each allowing precise wing-pattern resemblance to distinct butterfly models, originate from over a million years of independent chromosomal evolution in separate lineages. These “superalleles” have evolved from a chromosomal inversion captured by introgression and maintained in balanced polymorphism, triggering supergene inheritance. This mode of evolution involving the introgression of a chromosomal rearrangement is likely to be a common feature of complex structural polymorphisms associated with the coexistence of distinct adaptive syndromes. This shows that the reticulation of genealogies may have a powerful influence on the evolution of genetic architectures in nature. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019

Draft genome assembly of the sheep scab mite, Psoroptes ovis.

Sheep scab, caused by infestation with Psoroptes ovis, is highly contagious, results in intense pruritus, and represents a major welfare and economic concern. Here, we report the first draft genome assembly and gene prediction of P. ovis based on PacBio de novo sequencing. The ~63.2-Mb genome encodes 12,041 protein-coding genes. Copyright © 2018 Burgess et al.


July 7, 2019

Satellite DNA evolution: old ideas, new approaches.

A substantial portion of the genomes of most multicellular eukaryotes consists of large arrays of tandemly repeated sequence, collectively called satellite DNA. The processes generating and maintaining different satellite DNA abundances across lineages are important to understand as satellites have been linked to chromosome mis-segregation, disease phenotypes, and reproductive isolation between species. While much theory has been developed to describe satellite evolution, empirical tests of these models have fallen short because of the challenges in assessing satellite repeat regions of the genome. Advances in computational tools and sequencing technologies now enable identification and quantification of satellite sequences genome-wide. Here, we describe some of these tools and how their applications are furthering our knowledge of satellite evolution and function. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019

A draft genome sequence for the Ixodes scapularis cell line, ISE6

Background: The tick cell line ISE6, derived from Ixodes scapularis, is commonly used for amplification and detection of arboviruses in environmental or clinical samples. Methods: To assist with sequence-based assays, we sequenced the ISE6 genome with single-molecule, long-read technology. Results: The draft assembly appears near complete based on gene content analysis, though it appears to lack some instances of repeats in this highly repetitive genome. The assembly appears to have separated the haplotypes at many loci. DNA short read pairs, used for validation only, mapped to the cell line assembly at a higher rate than they mapped to the Ixodes scapularis reference genome sequence. Conclusions: The assembly could be useful for filtering host genome sequence from sequence data obtained from cells infected with pathogens.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.