X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

ASHG Virtual Poster: Long range phasing of cardiac disease genes using new long read sequencing technologies

Alex Dainis, a graduate student in Euan Ashley’s lab at Stanford University, presents her ASHG 2015 poster on haplotyping for genes linked to hypertrophic cardiomyopathy. Using the Iso-Seq method with SMRT Sequencing, she sequenced full transcripts of two genes of interest, generating data on 150 different isoforms. Rare variants, which could not be found with other technologies, were associated with haplotypes.

Read More »

Sunday, October 25, 2020

ASHG Virtual Poster: Alternative splicing in FMR1 premutations carriers

In this ASHG 2016 virtual poster, Flora Tassone from UC Davis describes her study of the molecular mechanisms linked to fragile X syndrome and associated disorders, such as FXTAS. She is using SMRT Sequencing to resolve the FMR1 gene in premutation carriers because it’s the only technology that can generate full-length transcripts with the causative CGG repeat expansion. Plus: direct confirmation of predicted isoform configurations.

Read More »

Sunday, October 25, 2020

AGBT Virtual Poster: Using the PacBio Iso-Seq method to search for novel colorectal cancer biomarkers

Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.

Read More »

Sunday, October 25, 2020

Webinar: Chasing alternative splicing in cancer: Simplified full-length isoform sequencing

Tremendous flexibility is maintained in the human proteome via alternative splicing, and cancer genomes often subvert this flexibility to promote survival. Identification and annotation of cancer-specific mRNA isoforms is critical to understanding how mutations in the genome affect the biology of cancer cells. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq method developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences needed to discover biomarkers for early detection and cancer stratification,…

Read More »

Sunday, October 25, 2020

Webinar: Survey of transcriptome diversity using Iso-Seq analysis

The Iso-Seq method enables the sequencing of transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. This webinar provides a comprehensive guide to Iso-Seq method data analysis, bioinformatics, and review key applications.

Read More »

Sunday, October 25, 2020

Webinar: Discover full-length RNA sequencing – No assembly required

In this webinar we present Single Molecule, Real-Time (SMRT) Sequencing and the Iso-Seq method, which allow you to generate full-length cDNA sequences — no assembly required — to characterize transcript isoforms within targeted genes or across an entire transcriptome. The presenters share how the Iso-Seq method: (1) Provides high quality, full-length transcript sequences of up to 15 kb; (2) Allows for one-day library prep on a single SMRT Cell 8M to comprehensively characterize a whole transcriptome; (3) Facilitates discovery of alternative splicing events, fusion gene detection, and allelic specific isoform detection; and (4) Enables discovery of potential cancer-specific isoforms in…

Read More »

Tuesday, April 21, 2020

Insights into transcriptional characteristics and homoeolog expression bias of embryo and de-embryonated kernels in developing grain through RNA-Seq and Iso-Seq.

Bread wheat (Triticum aestivum L.) is an allohexaploid, and the transcriptional characteristics of the wheat embryo and endosperm during grain development remain unclear. To analyze the transcriptome, we performed isoform sequencing (Iso-Seq) for wheat grain and RNA sequencing (RNA-Seq) for the embryo and de-embryonated kernels. The differential regulation between the embryo and de-embryonated kernels was found to be greater than the difference between the two time points for each tissue. Exactly 2264 and 4790 tissue-specific genes were found at 14 days post-anthesis (DPA), while 5166 and 3784 genes were found at 25 DPA in the embryo and de-embryonated kernels, respectively. Genes expressed…

Read More »

Tuesday, April 21, 2020

The landscape of SNCA transcripts across synucleinopathies: New insights from long reads sequencing analysis

Dysregulation of alpha-synuclein expression has been implicated in the pathogenesis of synucleinopathies, in particular Parkinsontextquoterights Disease (PD) and Dementia with Lewy bodies (DLB). Previous studies have shown that the alternatively spliced isoforms of the SNCA gene are differentially expressed in different parts of the brain for PD and DLB patients. Similarly, SNCA isoforms with skipped exons can have a functional impact on the protein domains. The large intronic region of the SNCA gene was also shown to harbor structural variants that affect transcriptional levels. Here we apply the first study of using long read sequencing with targeted capture of both…

Read More »

Tuesday, April 21, 2020

TIN2 Functions with TPP1/POT1 To Stimulate Telomerase Processivity.

TIN2 is an important regulator of telomere length, and mutations in TINF2, the gene encoding TIN2, cause short-telomere syndromes. While the genetics underscore the importance of TIN2, the mechanism through which TIN2 regulates telomere length remains unclear. Here, we tested the effects of human TIN2 on telomerase activity. We identified a new isoform in human cells, TIN2M, that is expressed at levels similar to those of previously studied TIN2 isoforms. All three TIN2 isoforms localized to and maintained telomere integrity in vivo, and localization was not disrupted by telomere syndrome mutations. Using direct telomerase activity assays, we discovered that TIN2…

Read More »

Tuesday, April 21, 2020

Sequence and Evolutionary Features for the Alternatively Spliced Exons of Eukaryotic Genes.

Alternative splicing of pre-mRNAs is a crucial mechanism for maintaining protein diversity in eukaryotes without requiring a considerable increase of genes in the number. Due to rapid advances in high-throughput sequencing technologies and computational algorithms, it is anticipated that alternative splicing events will be more intensively studied to address different kinds of biological questions. The occurrences of alternative splicing mean that all exons could be classified to be either constitutively or alternatively spliced depending on whether they are virtually included into all mature mRNAs. From an evolutionary point of view, therefore, the alternatively spliced exons would have been associated with…

Read More »

Tuesday, April 21, 2020

SMRT sequencing analysis reveals the full-length transcripts and alternative splicing patterns in Ananas comosus var. bracteatus.

Ananas comosus var. bracteatus is an herbaceous perennial monocot cultivated as an ornamental plant for its chimeric leaves. Because of its genomic complexity, and because no genomic information is available in the public GenBank database, the complete structure of the mRNA transcript is unclear and there are limited molecular mechanism studies for Ananas comosus var. bracteatus.Three size fractionated full-length cDNA libraries (1-2 kb, 2-3 kb, and 3-6 kb) were constructed and subsequently sequenced in five single-molecule real-time (SMRT) cells (2 cells, 2 cells, and 1 cell, respectively).In total, 19,838 transcripts were identified for alternative splicing (AS) analysis. Among them, 19,185…

Read More »

Tuesday, April 21, 2020

Tissue specific alpha-2-Macroglobulin (A2M) splice isoform diversity in Hilsa shad, Tenualosa ilisha (Hamilton, 1822).

The present study, for the first time, reported twelve A2M isoforms in Tenualosa ilisha, through SMRT sequencing. Hilsa shad, T. ilisha, an anadromous fish, faces environmental stresses and is thus prone to diseases. Here, expression profiles of different A2M isoforms in four tissues were studied in T. ilisha, for the tissue specific diversity of A2M. Large scale high quality full length transcripts (>0.99% accuracy) were obtained from liver, ovary, testes and gill transcriptomes, through Iso-sequencing on PacBio RSII. A total of 12 isoforms, with complete putatative proteins, were detected in three tissues (7 isoforms in liver, 4 in ovary and…

Read More »

1 2 3 8

Subscribe for blog updates:

Archives