X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Applications and Benefits of Single-Molecule Transcriptome Sequencing

Tuesday, May 21, 2019

When looking to understand the functional implications of genetic variability, scientists should seek out the Iso-Seq method, according to Cold Spring Harbor researchers.

In a recent paper published in Frontiers in Genetics, Doreen Ware, Bo Wang, and colleagues reviewed the state of transcript sequencing and analysis technologies, and concluded that single-molecule sequencing from PacBio provided several advantages over other methods.

A major challenge in molecular biology continues to be the complex mapping of the same genome to diverse phenotypes in different tissue types, development stages and environmental conditions, the paper states.

“A better understanding of the transcripts and expression of gene regulation is not only non-trivial but lies at the heart of this challenge,” the authors write.

RNA sequencing can support both the discovery and quantification of transcripts using a single high-throughput sequencing assay. But methods that rely on short reads have several limitations in revealing gene regulation, the protein-coding potential of the genome and ultimately the phenotypic diversity.

Long-read SMRT Sequencing for RNA characterization has the advantage of rendering, in vitro and without ambiguity, a full-length transcript sequence without depending on the error-prone computational step of assembly. As a result, they allow a more precise detection of alternative splicing events and eventually novel isoforms, making it easier to build gene models for species which are poorly studied or have an incomplete or missing reference genome, the authors state.

“With the development of single-molecule sequencing technology, ‘one read is one transcript’ is not a dream anymore, and scientists can get the intact sequence of each isoform by sequencing a single cDNA molecule,” the authors write.

The Iso-Seq approach offers particular advantages in the characterization of polyploid transcriptomes, which have a large number of repeats and homeolog genes, and in the profiling of allele-specific expression, Ware and Wang state.

They also detail experimental and informatic pipelines and highlight several downstream applications of the Iso-Seq method, including:

  • alternative splicing
  • alternative polyadenylation (APA)
  • fusion transcripts
  • long non-coding RNAs (lncRNAs)
  • isoform phasing, and
  • genome annotation

Regarding the last item, the team state that the Iso-Seq method can increase the accuracy of automated genome annotation by improving genome mapping of sequencing data, correctly identifying intron-exon boundaries, directly identifying alternatively spliced transcripts, identifying transcription start and end sites, and providing precise strand orientation to single exons genes. Mapped against a reference genome, the full-length transcripts that are uncovered can be used to improve or add de novo structural and functional annotation to a genome, improve genome assembly and existing gene models, they state.

“Iso-Seq is known to retrieve longer isoforms as well as more number of isoforms… This has revolutionized our understanding of the biology of a number of organisms, including plants and animals, since transcript diversity usually represents functional diversity,” the authors write.

Iso-Seq analysis has also benefited evolutionary studies, as it allows scientists to compare the splicing variants between species and better understand the conservation of genes/isoforms, the divergence of splicing patterns, and the significance of their expression levels.

The next challenge? What to do with all the new isoforms identified from the Iso-Seq method.

The growing number of isoforms identified from different tissues/conditions within an organism will need to be ranked and prioritized for community research. And not all of them will have a meaningful impact on the cellular biological processes of the cell, Ware and Wang note, so the results will have to be carefully validated and characterized.

“Experimental approaches such as CRISPR could help by targeting the role of each isoform, and see if there are redundant or complementary functions among these different splicing isoforms,” they conclude.

Subscribe for blog updates:

Archives