X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Steven Marsh from Anthony Nolan Discusses the Past and Future of Donor Matching

Monday, November 9, 2015

steve marshMendelspod host Theral Timpson recently interviewed Professor Steven Marsh, Director of Bioinformatics at the Anthony Nolan Research Institute, a UK-based organization dedicated to improving the outcomes of bone marrow transplantation and host to the world’s first bone marrow registry. Prof. Marsh and his team have dramatically improved the resolution of HLA typing — one of the methods used for matching compatible donors with transplant recipients — using long, accurate reads from PacBio sequencing. Their fascinating conversation covers the past, present, and future of HLA typing — highlights are below.

Short History of HLA Typing — There’s a Lot More Diversity than We Thought

When Marsh entered the field 30 years ago, HLA typing was performed with serology, and there were just 119 known HLA antigens. “We thought 119 was a lot of diversity,” he says. With the advent of genomic tools in the 1990s, researchers have had to evolve their practices for typing as more and more became known about the nature of HLA genes. “We’ve really realized that these genes are not just polymorphic, they are really hyper-polymorphic,” he says. The HLA B gene alone has 4,000 variants, Marsh notes. “The only way to do proper HLA typing in this day and age is to do sequencing,” he says.

Enter Long Reads and Exquisite Haplotypes

Using PacBio sequencing technology, Anthony Nolan aimed to extend its sequencing from a couple of gene exons to cover the full HLA genes and capture phasing information. “We’re seeing exquisite haplotypes … all the way through the HLA region,” Marsh says, noting that this gives them “very high resolution typing and very high allelic specificity.”

Marsh says he has been offered free NGS machines from other vendors, but for him, “those technologies would be a distraction.” The MHC/HLA genes are very GC-rich, he explains, making it difficult to use short-read sequencing technologies because of their high systematic error rates. “You cannot assign phase across the whole gene sequence for some allele combinations,” he says.

For Marsh, the future lies with the long-read sequencing capabilities of PacBio. “For me, it’s groundbreaking technology,” he says. One example of the unique capabilities provided to the Anthony Nolan team by PacBio sequencing is 3.5 kb contiguous sequences for HLA Class I genes, including all of the exons and introns, as demonstrated in a recent publication.

Complete, High-Resolution Typing — The Way Forward

Marsh is using the PacBio platform exclusively for his sequencing program and is already seeing the benefits of high-resolution typing. His goal: to speed up the process and improve matching preciseness to save lives. Anthony Nolan is the first group in the world to take this strategy to the clinic, and is using multiplexing to make the process more cost effective. “We really believe in [the PacBio technology], and we believe it will make an impact for patients,” he says.

The scientists at Anthony Nolan continue to gain deeper knowledge about HLA genes and have future plans to expand their focus to other relevant immune related regions, such as the KIR. They will also continue to explore other important genes comprised within the MHC locus such as MIC-A etc.

Click here to listen to the full podcast.

Subscribe for blog updates:

Archives