X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

SMRT Sequencing Provides Novel View of Long-Term Viral Evolution in a Single Patient

Thursday, July 23, 2015

A group of scientists from the University of Pittsburgh School of Medicine and New York University used long-read sequencing from PacBio for a remarkable new study characterizing influenza virus evolution with unprecedented precision.

Intrahost Dynamics of Antiviral Resistance in Influenza A Virus Reflect Complex Patterns of Segment Linkage, Reassortment, and Natural Selection,” published in mBio by lead author Matthew Rogers and senior author Elodie Ghedin, reports a two-year study tracking the flu virus in one person. Although normally limited to acute infection, in this case the patient, a three-year-old with severe combined immunodeficiency disease, received multiple antiviral therapies but kept shedding virus over the course of 21 months. The team was able to study 10 samples collected during that time period, using sequencing to track viral evolution in great detail. “This unique natural experiment provides a rare view into the patterns, dynamics, and mechanisms of drug resistance of influenza virus,” the team wrote.

The influenza virus is known to develop rapid resistance to antiviral medications, but the extremely short infection cycle — less than two weeks in an average healthy host — has historically made it difficult to pinpoint evolutionary mutations as they arise. The team used SMRT® Sequencing, performed by the Icahn Institute at Mount Sinai, to analyze the H3N2 viral genome and reconstruct haplotypes, providing a clear phylogenetic view of the virus evolving over time within the host.

Among the findings, the scientists report that “individual resistance mutations appeared weeks before they became dominant, evolved independently on co-circulating lineages, led to a genome-wide reduction in genetic diversity through a selective sweep, and were placed into new combinations by reassortment.”

Based on the long-read data, the scientists were able to reconstruct haplotypes for several large segments of the viral genome to learn more about gene reassortment in persistent influenza infection. This allowed the team to track viral lineage dynamics, observing minor lineages becoming dominant over time, particularly as drug-resistant variants emerged. The authors note that even though reassortment was an important driver in H3N2 evolution, “it may not always be frequent enough to break all patterns of segment linkage.” This conclusion was based on phylogenetic evidence demonstrating these linkage patterns, particularly between hemagglutinin- and matrix-encoding genome segments. These association matches have also been observed across the general population, according to the scientists.

Rogers et al. hope this work will contribute to the ability to predict the emergence of drug-resistant influenza strains and to the development of antiviral therapies that prevent or reduce the occurrence of resistance. They note, however, that the evolutionary processes they documented must be studied in more detail. “In particular, a better understanding of segment linkage and reassortment, and whether they differ between mammalian and avian influenza viruses, may enable more accurate predictions of the rapidity with which particular genomic combinations can be obtained, including those mediating drug resistance, antigenic escape, and host adaptation,” they conclude.

Want to know more about viral sequencing using PacBio® technology? Check out these additional resources:

Publications:
Human immunodeficiency virus (HIV) sequencing

Characterization of adeno-associated virus (AAV) genomic integration sites

De novo assembly of Pseudorabies virus

Webinar:
Human papilloma virus (HPV) sequencing

Subscribe for blog updates:

Archives