X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Catching up with Carola and the ‘Solar-Powered’ Sea Slug

Monday, June 10, 2019

sea slug

Two years ago, Carola Greve and colleagues at the Zoological Research Museum Alexander Koenig in Bonn, Germany, were seeking to #SeqtheSlug as part of the 2017 Plant and Animal SMRT Grant competition, and the popular project was a close runner-up. Greve didn’t give up on her quest to sequence the ‘solar-powered’ sea slug. We caught up with her recently at the SMRT Leiden Scientific Symposium, where her update on the sea slug project earned her a Best Poster award. 

 

Why the sea slug?  

Although Mollusca represents the second largest animal phylum with around 85,000 extant species, only 23 mollusc genomes are publicly available on NCBI genome database, and when we started our project, no reference genome had been generated for any sacoglossan (algae-ingesting) mollusc. Some of these sacoglossa species are particularly interesting because of their ability to sequester chloroplasts from its food algae. These ‘stolen’ plastids, also known as kleptoplasts, are then stored in a functional state in the digestive gland cells of the slugs and presumably allow them to endure weeks or even months of starvation.

How do the slugs keep the chloroplasts active which continuously produce starch inside the slugs? No one knows! But up to now, this spectacular phenomenon, termed functional kleptoplasty, is unique among animals. We wanted to scour the genome for genes associated with this unique ability and further provide a valuable genomic resource for future genome-wide comparative analyses to organisms with similar lifestyles, i.e. those stealing useful parts out of their prey and incorporating, instead of digesting them.

How has the project progressed?

We created a mitochondrial genome for Plakobranchus cf. ocellatus (van Hasselt 1824), a sea slug species found in the Philippines, using Illumina short reads and another team (Huimin Cai, et al. 2019) beat us to a draft genome assembly earlier this year, of the Elysia chlorotica species, using a hybrid Illumina/PacBio approach. Their genome assembly comprised 9,989 scaffolds, with a total length of 557 Mb, and their annotation identified 176 Mb (32.6%) of repetitive sequences with 24,980 protein-coding genes.

We’d like to improve the genome using PacBio, and we are now working with Kornelia Neveling a molecular geneticist at the Genome Diagnostics Nijmegen, Radboud University Medical Center to get some good reads from our P. ocellatus samples. Once we get the results, we want to compare the genomes of the two slug species, as well as examine the secondary metabolites that they produce, such as polypropionates, which might be interesting for pharmaceutical applications.  

What have you learned so far?

We’ve learned that it’s really difficult to extract high molecular weight DNA from these slimy creatures, and there seems to be something in the process that is inhibiting the enzymes involved in sequencing. The challenges have helped me in my new role, however. I am now at the Senckenberg Research Institute and Natural History Museum in Frankfurt, where I am leading the Translational Biodiversity Genomics lab. One of our main purposes is to extend biodiversity research to non-model organisms, and make it more accessible for basic and applied research. As part of this, we are establishing DNA extraction protocols for species that are hard to work with, such as worms, insects, slugs, and historical museum samples.

 

Have an interesting project you’d like to try using SMRT Sequencing? For a look at our ongoing and future SMRT Grant programs, check out www.pacb.com/smrtgrant

 

Subscribe for blog updates:

Archives