X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Scientists Pinpoint Pathogenic Inversion in Intellectual Disability Case Using HiFi Sequencing

Tuesday, November 17, 2020

Scientists at Yokohama City University Graduate School of Medicine and Osaka Women’s and Children’s Hospital have discovered a novel pathogenic variant associated with intellectual disability. They made the discovery using HiFi sequencing after previous short-read investigations failed to produce an answer.

In the journal Genomics, the team reports the case of 12-year-old monozygotic twin girls who exhibited developmental delays, severely drooping eyelids, and seizures since the age of 5 months. Clinical symptoms matched Dravet syndrome, but no molecular evidence was available to confirm that diagnosis. Their case had previously been analyzed with short-read exome sequencing, but no pathogenic variants were uncovered. Lead author Takeshi Mizuguchi, senior author Naomichi Matsumoto, and collaborators turned to HiFi sequencing and the Sequel II System “to search for variants that are unrecognized by exome sequencing,” they write.

While intellectual disability (ID) has been linked to variants in more than 500 genes, even the best analytical methods have a diagnostic success rate of less than 30%. “There are still many cases for which no molecular diagnosis has been possible,” the authors note. “Therefore, it is important to determine the molecular genetics of unsolved ID cases using new technologies.”

The scientists sequenced 15 kb size-selected libraries for one of the twins and both parents to generate highly accurate (>99% or Q20) long reads, known as HiFi reads. Next, the team used pbsv to call structural variants, and Google’s DeepVariant to call small variants and indels. This process highlighted hundreds of deletions, insertions, and duplications, plus seven inversions, in the twin’s genome that were potential de novo structural variants. “A 12-kb inversion disrupting the coding sequence of Bromodomain and PHD Finger containing 1 … immediately drew our attention,” the authors report, because variants in this region had been linked to an intellectual disability syndrome consistent with the twins’ symptoms. “Among the 16 possible de novo [structural variant] calls affecting RefSeq gene exons, no other genes were linked to an OMIM autosomal dominant disease entry,” they add.

 

HiFi sequencing of a trio identifies a pathogenic heterozygous 12 kb de novo inversion that disrupts the gene BRPF1. Single-nucleotide variants (marked with “*”) show that the inversion occurred on the maternal allele #3.

The 12 kb copy-neutral inversion was confirmed with Southern blot, which also showed that both parents and an unaffected older brother lacked the inversion. A breakpoint analysis found that “the two breakpoint junctions identified by Sanger sequencing and the pbsv inversion call were identical,” the team notes, “demonstrating the accuracy of HiFi long-read analysis.” The scientists also point out that not only was the inversion missed by exome sequencing due to its copy-neutral status and repetitive flanking sequence, but it also would have been missed by traditional chromosomal analysis, which has a lower limit of detection of 10 Mb. Finally, using the trio data with haplotype phasing, the team discovered that the inversion was a de novo variant on the maternally transmitted chromosome.

“Importantly, the current study demonstrates that inversions can now be accessed using an ‘unbiased-genomic’ strategy with no prior knowledge,” the authors write. “This state-of-the-art technology is advantageous for elucidating hitherto inaccessible genomic changes.”

 

To learn more, explore SMRT Sequencing workflows and additional resources on comprehensive variant detection and structural variant detection.

Subscribe for blog updates:

Archives