+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Rice Revelations: Nine New Genome Assemblies Uncover Key Traits and Evolutionary Clues

Monday, April 9, 2018

rice grainsRevered around the world, rice is a staple food for nearly half of the population. But as that population grows, rice breeders are faced with the challenge of producing crops that are high yielding, disease-resistant and nutritious, while at the same time being more sustainable.

The International Oryza Map Alignment Project (OMAP) was initiated in 2003 to develop a set of high-quality genomic resources for the wild relatives of rice that could be used as a resource to discover and utilize novel genes, traits and/or genomic regions for crop improvement and basic research.

Members of the consortium recently released new reference assemblies for six wild Oryza species (O. nivara, O. rufipogon, O. barthii, O. glumaepatula, O. meridionalis and O. punctata), two domesticates (O. sativa vg. indica (IR 8) and O. sativa vg. aus (N 22)) and the closely related outgroup species L. perrieri.

In a paper published in Nature Genetics, “Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza,” senior author Rod A. Wing, of the Arizona Genomics Institute at the University of Arizona, first author Joshua C. Stein, of Cold Spring Harbor, and colleagues from 17 other institutions, describe what they found when analyzing the new assemblies and comparing them to four previously published genomes.

Among the major findings were the identification of several disease resistance genes and haplotypes, which could support the breeding of new varieties for natural resistance to growing pathogen threats such as blast (Magnaporthe oryzae).

“Our sequencing of seven wild relatives of crop species opens a treasure trove of novel resistance haplotypes and loci to sustain this strategy,” the authors write.

“The practical utility of our resources is directly demonstrated by our identification of a strong candidate for the long-sought Pi-ta2 locus, which in combination with Pi-ta provides broad-specificity resistance to M. oryzae,” they add.

The study is also the first to contain a complete long-read assembly of IR 8 ‘Miracle Rice’, which relieved famine and drove the Green Revolution in Asia 50 years ago.

And it should prove valuable for the study of molecular evolution. As the authors note, the new dataset represents “a genome-wide vista of the results of ~15 million years of both natural and artificial selection on a single genus.”

Over this time period, the Oryzeae have maintained a base chromosome number of 12, despite their global distribution and bursts of transposable element diversification that, in some cases, led to doubling of genome sizes, the study found.

The reference genomes span the species tree, and were used to resolve several areas of the Oryza phylogeny. Their genome-based age estimates imply a “remarkably rapid diversification rate” (~0.50 net new species/million years), placing it on par with many rapidly diversifying taxa in island and continental hotspots, the authors state.

“Our phylogenomic work illustrates both the challenges of inferring species phylogenies in closely related plant taxa—incomplete lineage sorting, hybridization and introgression—and the power of whole-genome sequences to untangle the resulting phylogenetic discordance,” they write.

The amount and richness of data provided by long-read sequencing led to “a much more nuanced view… that reflects the mosaic history of different parts of the genome,” the author add.

To learn more about efforts by the Arizona Genomics Institute to sequence 23 species of rice using PacBio SMRT Sequencing, watch Rod Wing’s presentation at PAG or read this brief case study.

 

 

Subscribe for blog updates:

Archives