X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

PacBio Sequencing Contributes to New Japanese Reference Genome

Monday, February 10, 2020

People of Japanese descent just moved a little closer toward the promise of precision medicine thanks to a population-specific reference genome based on the de novo genome assembly of three Japanese individuals. A new preprint describing the work shows that SMRT Sequencing was instrumental in the achievement.

Scientists from Tohoku University, led by Jun Takayama (@jntkym), Kengo Kinoshita (@kk824), Masayuki Yamamoto, and Gen Tamiya, aimed to create an improved reference genome resource that would better represent the genetic background of a Japanese population than the current human reference genome. “Some ethnic ancestries are under-represented in the international human reference genome (e.g., GRCh37), especially Asian populations, due to a strong bias toward European and African ancestries in a single mosaic haploid genome consisting chiefly of a single donor,” they write.

To address that challenge, they sequenced the genomes of three Japanese individuals to more than 100-fold coverage with PacBio SMRT Sequencing. The contig N50 value for each genome was approximately 20 Mb. Bionano optical maps were used to perform hybrid scaffolding to boost contiguity even further. “These and other assembly statistics were better than or comparable to other published de novo assemblies,” the authors report.

 

Figure 1a from bioRxiv preprint – Jun Takayama et al.

Fig 1a. Construction of JG1: PCA plot showing that the three sample donors are within the Japanese population cluster.

 

Next, the team had to merge all three of these assemblies to “construct a reference-quality haploid genome sequence,” they write. “We integrated the genomes using the major allele for consensus, and anchored the scaffolds using sequence-tagged site markers from conventional genetic and radiation hybrid maps to reconstruct each chromosome sequence.” The meta-assembly was designed to avoid the inclusion of rare variants and unresolved sequences for broadest possible applicability.

Takayama et al. validated the utility of this new reference genome — known as JG1 — by analyzing its representation of common variants among Japanese people and its ability to home in on causal variants for rare disease from seven Japanese families.  In all cases, the population-specific reference performed at least as well as or better than other assemblies in detecting relevant variation; for example, in the rare disease case, JG1 reduced the number of false-positive variant calls from an exome analysis.

JG1 “is highly contiguous, accurate, and carries the major allele in the majority of single nucleotide variant sites for a Japanese population,” the scientists report. “We expect that population-specific reference genome such as JG1 will prove to be practical and beneficial options for genome analyses of individuals originated from the population.”

 

PacBio long-read sequencing is being used to develop population-specific reference genomes as part of several international research efforts. Learn more about these projects and explore detailed assembly information in our interactive map.

 

Subscribe for blog updates:

Archives