X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

One For All: HiFi Long Reads for de Novo Assembly and Comprehensive Variant Detection

Tuesday, January 15, 2019

CCS read protocol

We’re excited to report on new SMRT Sequencing advances that will ultimately help users generate extremely accurate, single-source data for large-scale genome projects. We demonstrate this new approach in a preprint on bioRxiv, and intend to fully support the new data type in upcoming product releases for the broader SMRT Sequencing community.

The preprint describes a collaborative effort to comprehensively characterize a human genome — we chose the well-analyzed HG002/NA24385 sample available as a benchmark from the Genome in a Bottle consortium — Lead authors Aaron Wenger and Paul Peluso, senior authors David Rank and Michael Hunkapiller, and co-authors at PacBio, Google, NIST, and a host of leading academic institutions and companies contributed to the publication.

The work stems from our ongoing commitment to keep increasing the quality and usability of data generated from SMRT Sequencing systems. “Today, human genomes are sequenced at population scales, but it remains necessary to combine sequencing technologies to cover all types of genetic variation, which increases cost and adds complexity to projects,” the paper’s authors explain. “A sequencing technology with long read length and high accuracy would enable a single experiment for comprehensive variant discovery.”

To that end, the team developed a new protocol based on the CCS method, which builds a consensus sequence based on many passes across the same template. “Recent gains in read length for SMRT Sequencing and optimized DNA template preparation suggested an opportunity to unify high accuracy with long read lengths using CCS,” the scientists report.

Using the human genome as a proving ground, the authors selected a library tightly-distributed at 15 kb, generated CCS reads with an average of 10 passes, and sequenced the genome to 28-fold coverage. The average read accuracy is 99.8%, matching the accuracy of the typical short read. De novo assembly of the reads yielded “a highly contiguous and accurate genome with contig N50 above 15 Mb and concordance of Q48 (99.998%),” they add.

The team also interrogated a broad range of variants and performed phasing. “We analyze the CCS reads to call SNVs, indels, and structural variants; to phase variants into haplotype blocks; and to de novo assemble the HG002 genome,” the scientists report. “The CCS performance for SNV and indel calling rivals that of the commonly-used pairing of BWA and GATK on 30-fold short-read coverage.” Detection of variants was consistently strong for SNVs (99.91%), indels (95.98%), and structural variants (95.99%). As the authors note, “Nearly all (99.6%) variants are phased into haplotypes, which further improves variant detection.”

Beyond the remarkable quality results from this protocol, the scientists note a number of other advantages with this approach. These include easier sample prep, since there is no need for ultra-long genomic DNA, reduced computational time, and the ability to use familiar tools like GATK designed for accurate reads.

Future improvements to the method — such as faster generation of HiFi reads from subreads and increasing the number of reads produced in a run — should “facilitate rapid, population-scale analysis of full genomes to improve human health,” the authors write. The HiFi protocol also will have application outside of human genomics, with utility in metagenomics as well as plant and animal genome assembly.

Subscribe for blog updates:

Archives