X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Webinar: No-Amp Targeted Sequencing Yields Base-Level Resolution of Hard-to-Amplify Regions

Wednesday, September 4, 2019

Until recently, enriching for certain regions of the genome has been virtually impossible. Repeat expansions, extreme GC regions, and other genomic elements are very difficult to target using traditional enrichment methods. That’s why our new “No-Amp” targeted sequencing application  — a streamlined, amplification-free approach based on the CRISPR/Cas9 system — is a valuable addition to the SMRT Sequencing toolbox.

No-Amp targeted sequencing combines the CRISPR/Cas9 enrichment method with SMRT Sequencing. Pacific Biosciences does not sell a kit for carrying out the overall No-Amp Targeted Sequencing method. Use of these methods may require rights to third-party owned intellectual property.

The method was demonstrated in a recent PLoS One publication, and a new webinar delves into technical details of the protocol. Hosted by our own Paul Kotturi and Jenny Ekholm, the presentation offers an overview of uses for which the No-Amp method is beneficial, real-world examples of its results, and advantages it holds compared to traditionally used PCR and Southern blot techniques.

Kotturi kicked off the presentation with a look at the general advantages of SMRT Sequencing, including long reads, high accuracy, single-molecule resolution, simultaneous epigenetic detection, and uniform coverage. He also noted some recent performance metrics from the new Sequel II System: more than half of data is in reads >190 kb , and each SMRT Cell 8M generates up to 160 Gb of sequence data. With the HiFi sequencing mode that makes use of circular consensus sequencing, the system can achieve Q30 accuracy with just eight passes around a molecule.

Next, Ekholm stepped in to focus on the No-Amp application. Generating a sequencing library using the No-Amp method is relatively straightforward, the first step is to block the 5’ and 3’ ends of the genomic DNA, followed by the CRISPR/Cas9 digestion. To enrich for the region of interest guide RNAs are designed flanking each end of the targeted region, making them available for sequencing adapter ligation after the Cas9 digestion. The sequencing library is then cleaned up before sequencing. The No-Amp method takes two days (with less than four hours of hands-on time) and is compatible with both the Sequel System and the Sequel II System.

No-Amp targeted sequencing workflow

Users of the No-Amp method can multiplex target regions, samples, or both to maximize sequencing efficiency and minimize cost. Typical target insert sizes range from 4 kb to 6 kb, though scientists have successfully extracted even longer fragments with this process, Ekholm noted. The expected yield is hundreds of Q20 reads per target and the on-target rate for the No-Amp method is 40-60%, which translates to enrichment factors of 10,000-100,000 fold.

Later in the webinar, Kotturi discussed elements needed for this protocol: high-purity, high molecular weight DNA; 5-10 µg of DNA per SMRT Cell but only 1-2 µug / sample when multiplexing 5-10 samples / run; guide RNAs; barcoded adapters, if multiplexing samples; and a No-Amp accessory kit with primers and buffers. He also presented information about cost. In a five-sample multiplex workflow, the cost (U.S. list price) comes to $220 per sample. When multiplexing increases to 10 samples, the per-sample cost drops to $130 per sample. When multiplexing multiple targets per sample, these costs drop even further per locus. At PacBio, we routinely run 4 targets per sample.

If your research would benefit from capturing and sequencing regions that are otherwise intractable, this webinar is well worth your time. It also includes valuable information about data analysis and visualization, specific examples of targeting disease-associated repeat expansion regions, and much more.

Watch the complete webinar and visit www.pacb.com/noamp to learn more:

Subscribe for blog updates:

Archives