June 6, 2018  |  Microbial sequencing methods

New Resource for Microbiologists: Collection of 3,000 Bacteria Genomes Released

nose bacteria
Haemophilus influenzae, a sample of which was deposited to the NCTC collection by Alexander Fleming, from his own nose.

The genomes of 3,000 strains of bacteria, including some of the deadliest in the world, are now available to researchers as part of an ambitious project by the UK’s National Collection of Type Cultures (NCTC), in partnership with the Wellcome Sanger Institute and PacBio.
Plague, cholera, streptomyces, and 250 strains of E. coli, are among the reference genomes created, as well as all ‘type strains’ of the bacteria in the collection — the first strains that describe the species and are used to classify them. The genome sequences of these highly valuable strains are fundamental for developing ways to identify specific infections in people, including tests diagnosing bacterial infections in the field to rapidly identify the source of an outbreak and help contain infections.
The collection includes several of the most important known drug-resistant bacteria, such as tuberculosis (one of the top ten causes of death worldwide, infecting 10.4 million and killing 1.7 million people in 2016 alone) and gonorrhoea (the sexually transmitted disease that infects 78 million people a year and is now becoming extremely difficult to treat) — and some varieties of historical significance, such as a dysentery-causing Shigella flexneri isolated in 1915 from a soldier in the trenches of World War 1, and a sample from the nose of penicillin discoverer Alexander Fleming.
“Historical collections such at the NCTC are of enormous value in understanding current pathogens,” said Julian Parkhill from the Wellcome Sanger Institute. “Knowing very accurately what bacteria looked like before and during the introduction of antibiotics and vaccines, and comparing them to current strains from the same collection, shows us how they have responded to these treatments. This in turn helps us develop new antibiotics and vaccines.”
“PacBio’s comprehensive DNA sequencing enables deep genomic analyses, and we are happy to be partnering with them for this important project,” he added.
Our CSO Jonas Korlach, stated: “The high-quality genomic maps enabled by SMRT Sequencing allow an unprecedented understanding of these bacteria. We are delighted to be chosen by institutions like Wellcome Sanger to help create such essential resources for the scientific and public health communities.”
Going forward, all the bacterial species in the NCTC collection will be sequenced as they are collected. Researchers can order bacterial strains from the NCTC website. Full information about each strain, including the DNA sequences, are available at EMBL-EBI.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.