X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Creating an Epigenetic Barcode to Accurately Characterize Microbial Communities

Tuesday, December 12, 2017

Unraveling the role of the microbiome in human health and environmental samples is an emerging priority in scientific study. But despite the best advances in sequencing technology, identifying the bacteria, fungi, and other organisms present in complex samples remains a huge challenge.

Metagenomic shotgun sequencing can read chromosomes, plasmids, and bacteriophages, and comparison to reference genome sequences can be used to place them into putative taxa and species bins, but these methods fail to sufficiently distinguish between genomes that are very similar.

A team of scientists from the Icahn School of Medicine at Mount Sinai, Sema4, and other institutions has come up with a novel solution: a computational method that uses PacBio long-read sequencing of metagenomic DNA to identify methylated motifs and create an epigenetic barcode that enables more precise microbiome analysis.

The process takes advantage of methyl groups which are added to nucleotides in bacteria and archaea in a highly sequence-specific manner, and these motifs often differ among species and strains.

The team took advantage of inter-pulse duration values that represent the time it takes a DNA polymerase to translocate from one nucleotide to the next during SMRT Sequencing. This measure can distinguish between methylated and non-methylated bases. They calculated methylation scores across motifs of several bacterial samples and murine fecal samples and created methylation profiles, which were used alongside sequence composition features to assemble contigs into species- and strain-level bins.

In a paper published in Nature Biotechnology, senior author Gang Fang describes how the method was also able to link mobile genetic elements, including antibiotic resistance-encoding plasmids, to their host species in a real microbiome sample.

Although their sequence coverages and composition profiles often differ, plasmid and chromosomal DNA of the bacterial host are methylated by the same set of methyltransferases, resulting in matching methylation profiles, the authors note.

“The biomedical community has long needed a microbiome analysis method capable of resolving individual species and strains with high resolution,” Fang said in statement.

The method could ultimately prove useful in both research and clinical settings, since it allows for linking mobile genetic elements to their bacterial hosts. This information makes it possible for  scientists to more accurately predict virulence and antibiotic resistance of individual bacterial species and strains, among other important traits.

Subscribe for blog updates:

Archives