+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

AGBT Day 3: Human Genomes and Their Microbial Friends

Friday, February 19, 2016

We’ve been in the genomics world long enough to remember when it was a big deal to see a great single-gene assembly or microbial genome assembly reported in an AGBT talk. It’s really something to attend this year and see some beautifully assembled whole human genomes.

Several of the Friday talks really captured our interest, but we can only cover a couple of them here. NCBI’s Valerie Schneider spoke about efforts through the Genome Reference Consortium to improve assembly of the human reference genome, noting that one challenge has been the shift from a clone-based approach during the Human Genome Project to whole-genome sequences today. While these new sequences are adding tremendously valuable information to the reference assembly and are shaping how it is curated, she said, they also introduce different assembly issues that have to be reconciled with existing information.

Schneider noted that considerable improvements have occurred for highly repetitive regions, such as the mucin genes. SMRT Sequencing has made it possible to fully resolve many of these regions, which had long appeared intractable. She also presented recent work on the CHM1 and CHM13 hydatidiform moles, which have haploid human genomes that are helping make sense of some complex regions in the assembly thanks to long-read sequencing. Schneider illustrated the challenges of choosing which sequence to add to the reference when she presented a number of quality metrics indicating that some assemblies were better for, say, contiguity, while others were better for QV score. “No one assembly is excelling for all metrics,” she said.

During another talk, Karyn Meltz Steinberg from the McDonnell Genome Institute at Washington University reported the first African reference genome assembly, a Yoruban sample analyzed with 70x coverage of SMRT Sequencing data. She told attendees that the best strategy to achieve a gold-quality genome is to use PacBio sequencing, which offers a vast improvement over short-read approaches. The team used a BioNano Genomics genome map to add extremely long-range scaffold information, boosting the already impressive contig N50 of 6 Mb to a scaffold N50 of nearly 15 Mb.

Also in the informatics session, Maria Nattestad from Cold Spring Harbor Laboratory presented an algorithm called SplitThreader for analyzing highly amplified or rearranged cancer genomes. Inspired by examples like a commonly used Her2-amplified breast cancer cell line, which has a full complement of 80 chromosomes, the SplitThreader algorithm analyzes complex events to find the most likely evolutionary path that created them. With PacBio sequencing data, the tool was able to uncover and visualize new candidate fusion genes.

In human microbiome work, Gregory Buck from Virginia Commonwealth University presented data from two projects designed to elucidate the profiles of vaginal microbial communities by studying thousands of women. This particular microbiome may be associated with preterm birth, HIV risk, and more. Buck noted that some of the microbes discovered have been sequenced with PacBio systems to produce remarkably high-quality, fully closed assemblies in very little time. The projects have identified 20 vagitypes, or typical microbial community profiles, some of which appear to be influenced by genetics and ancestry.

We recorded some of the AGBT talks this year, and will be making those videos available on the blog shortly. Stay tuned!

Subscribe for blog updates:

Archives