PacBio Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce exceptionally long reads with high accuracy. SMRT Sequencing allows you to accelerate your science with the complete range of PacBio applications to produce data you can trust.
Learn how Single Molecule, Real-Time (SMRT) Sequencing and the Sequel IIe System will accelerate your research by delivering highly accurate long reads to provide the most comprehensive view of genomes, transcriptomes and epigenomes.
A brief animated introduction to Pacific Biosciences’ Single Molecule, Real-Time (SMRT) Sequencing, including the SMRT Cell and ZMW (zero mode waveguide).
This animation depicts a process by which single molecule SMRTbell templates are loaded in the Zero Mode Waveguides (ZMWs) of the PacBio RS II sequencing system using the automated MagBead Station.
PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.
Long-read sequencing technologies like Iso-Seq analysis present researchers with a powerful tool for probing the transcriptomes of many species. The ability to sequence transcripts from end-to-end has revealed transcription complexity on a scale that was previously impossible. This sequence rich information has also improved our ability to predict transcript functions and biotypes. Researchers can now use Iso-Seq analysis to discover transcript models in almost any species with an accuracy on par with human and mouse annotations. In this webinar, Richard Kuo discusses the core concepts behind Iso-Seq analysis and how to use it to improve or build a new transcriptome…
This webinar, presented by Nisha Pillai, provides an overview of amplicon sequencing to target specific regions of a genome using PacBio Single Molecule, Real-Time (SMRT) Sequencing. This session provides an overview of bioinformatics approaches for PacBio amplicon analysis including circular consensus sequencing and long amplicon analysis.
In this presentation, Justin Blethrow provides an overview of recent and upcoming developments across PacBio’s SMRT Sequencing product portfolio, and their implications for PacBio’s major applications. In presenting the product roadmap, he illustrates how key new products coming in 2019 will make SMRT Sequencing dramatically more affordable and easy to use, and how they will enable customers to routinely produce highly accurate, single-molecule long reads.
In this webinar, Jonas Korlach, Chief Scientific Officer, PacBio provides an overview of the features and the advantages of the new Sequel II System. Kiran Garimella, Senior Computational Scientist, Broad Institute of MIT and Harvard University, describes his work sequencing humans with HiFi reads enabling discovery of structural variants undetectable in short reads. Luke Tallon, Scientific Director, Genomics Resource Center, Institute for Genome Sciences, University of Maryland School of Medicine, covers the GRC’s work on bacterial multiplexing, 16S microbiome profiling, and shotgun metagenomics. Finally, Shane McCarthy, Senior Research Associate, University of Cambridge, focuses on the scaling and affordability of high-quality…
To start Day 1 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on the latest releases and performance metrics for the Sequel II System. The longest reads generated on this system with the SMRT Cell 8M now go beyond 175,000 bases, while maintaining extremely high accuracy. HiFi mode, for example, uses circular consensus sequencing to achieve accuracy of Q40 or even Q50.
In this presentation, Emily Hatas of PacBio offers a look a how SMRT Sequencing has changed over the years as well as the most common applications in human genome analysis: high-throughput structural variant detection; comprehensive variant detection; and de novo assembly of reference genomes.
In this introductory talk to our PAG 2020 workshop, PacBio Chief Scientific Officer Jonas Korlach presents the evolution of Single Molecule, Real-Time (SMRT) Sequencing technology over the past decade and highlights recent developments, including the Sequel II System performance and reliability
In this talk at PAG 2020, PacBio Plant and Animal Sciences Marketing Manager Michelle Vierra discusses recent updates to Single Molecule, Real-Time (SMRT) Sequencing technology, including the Sequel II System, updated protocols for low-input as well as other upcoming developments.
The release of the PacBio Sequel II System in 2019 brought dramatic throughput improvements and protocols for producing a new data type, highly accurate long reads or HiFi reads. PacBio is the only sequencing technology to offer highly accurate long reads (HiFi reads) that provide Sanger-quality accuracy (>99%) with the read lengths needed for assembly of complex genomes. The long length and high accuracy of HiFi reads makes them the ideal starting point for many applications, and one area of major interest is genome assembly. HiFi assembly is faster, cheaper, more accurate, and easier to phase than standard long-read assembly.…
In this LabRoots webinar, Jonas Korlach the CSO of PacBio provides an introduction to PacBio HiFi sequence reads, which are both long (up to 25 kb currently) and accurate (>99%) at the individual single-molecule sequence read level andhave allowed for advances in de novo genome assemblies. Korlach reviews the characteristics of HiFi read data obtained with the Sequel II System, followed by examples of high-quality genome assemblies for human, plant and animal genomes including the different aspects of evaluating genome assemblies (contiguity, accuracy, completeness and allelic phasing) and illustrates their high quality by examples of resolving centromeres, telomeres, segmental duplications…