Menu
July 19, 2019  |  

One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.

Like a jigsaw puzzle with large pieces, a genome sequenced with long reads is easier to assemble. However, recent sequencing technologies have favored lowering per-base cost at the expense of read length. This has dramatically reduced sequencing cost, but resulted in fragmented assemblies, which negatively affect downstream analyses and hinder the creation of finished (gapless, high-quality) genomes. In contrast, emerging long-read sequencing technologies can now produce reads tens of kilobases in length, enabling the automated finishing of microbial genomes for under $1000. This promises to improve the quality of reference databases and facilitate new studies of chromosomal structure and variation. We present an overview of these new technologies and the methods used to assemble long reads into complete genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.


July 19, 2019  |  

Comparison of genome sequencing technology and assembly methods for the analysis of a GC-rich bacterial genome.

Improvements in technology and decreases in price have made de novo bacterial genomic sequencing a reality for many researchers, but it has created a need to evaluate the methods for generating a complete and accurate genome assembly. We sequenced the GC-rich Caulobacter henricii genome using the Illumina MiSeq, Roche 454, and Pacific Biosciences RS II sequencing systems. To generate a complete genome sequence, we performed assemblies using eight readily available programs and found that builds using the Illumina MiSeq and the Roche 454 data produced accurate yet numerous contigs. SPAdes performed the best followed by PANDAseq. In contrast, the Celera assembler produced a single genomic contig using the Pacific Biosciences data after error correction with the Illumina MiSeq data. In addition, we duplicated this build using the Pacific Biosciences data with HGAP2.0. The accuracy of these builds was verified by pulsed-field gel electrophoresis of genomic DNA cut with restriction enzymes.


July 19, 2019  |  

Analysis of the Campylobacter jejuni genome by SMRT DNA Sequencing identifies restriction-modification motifs.

Campylobacter jejuni is a leading bacterial cause of human gastroenteritis. The goal of this study was to analyze the C. jejuni F38011 strain, recovered from an individual with severe enteritis, at a genomic and proteomic level to gain insight into microbial processes. The C. jejuni F38011 genome is comprised of 1,691,939 bp, with a mol.% (G+C) content of 30.5%. PacBio sequencing coupled with REBASE analysis was used to predict C. jejuni F38011 genomic sites and enzymes that may be involved in DNA restriction-modification. A total of five putative methylation motifs were identified as well as the C. jejuni enzymes that could be responsible for the modifications. Peptides corresponding to the deduced amino acid sequence of the C. jejuni enzymes were identified using proteomics. This work sets the stage for studies to dissect the precise functions of the C. jejuni putative restriction-modification enzymes. Taken together, the data generated in this study contributes to our knowledge of the genomic content, methylation profile, and encoding capacity of C. jejuni.


July 19, 2019  |  

Completing bacterial genome assemblies: strategy and performance comparisons.

Determining the genomic sequences of microorganisms is the basis and prerequisite for understanding their biology and functional characterization. While the advent of low-cost, extremely high-throughput second-generation sequencing technologies and the parallel development of assembly algorithms have generated rapid and cost-effective genome assemblies, such assemblies are often unfinished, fragmented draft genomes as a result of short read lengths and long repeats present in multiple copies. Third-generation, PacBio sequencing technologies circumvented this problem by greatly increasing read length. Hybrid approaches including ALLPATHS-LG, PacBio corrected reads pipeline, SPAdes, and SSPACE-LongRead, and non-hybrid approaches-hierarchical genome-assembly process (HGAP) and PacBio corrected reads pipeline via self-correction-have therefore been proposed to utilize the PacBio long reads that can span many thousands of bases to facilitate the assembly of complete microbial genomes. However, standardized procedures that aim at evaluating and comparing these approaches are currently insufficient. To address the issue, we herein provide a comprehensive comparison by collecting datasets for the comparative assessment on the above-mentioned five assemblers. In addition to offering explicit and beneficial recommendations to practitioners, this study aims to aid in the design of a paradigm positioned to complete bacterial genome assembly.


July 19, 2019  |  

PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations.

Generation of long (>5 Kb) DNA sequencing reads provides an approach for interrogation of complex regions in the human genome. Currently, large-insert whole genome sequencing (WGS) technologies from Pacific Biosciences (PacBio) enable analysis of chromosomal structural variations (SVs), but the cost to achieve the required sequence coverage across the entire human genome is high.We developed a method (termed PacBio-LITS) that combines oligonucleotide-based DNA target-capture enrichment technologies with PacBio large-insert library preparation to facilitate SV studies at specific chromosomal regions. PacBio-LITS provides deep sequence coverage at the specified sites at substantially reduced cost compared with PacBio WGS. The efficacy of PacBio-LITS is illustrated by delineating the breakpoint junctions of low copy repeat (LCR)-associated complex structural rearrangements on chr17p11.2 in patients diagnosed with Potocki-Lupski syndrome (PTLS; MIM#610883). We successfully identified previously determined breakpoint junctions in three PTLS cases, and also were able to discover novel junctions in repetitive sequences, including LCR-mediated breakpoints. The new information has enabled us to propose mechanisms for formation of these structural variants.The new method leverages the cost efficiency of targeted capture-sequencing as well as the mappability and scaffolding capabilities of long sequencing reads generated by the PacBio platform. It is therefore suitable for studying complex SVs, especially those involving LCRs, inversions, and the generation of chimeric Alu elements at the breakpoints. Other genomic research applications, such as haplotype phasing and small insertion and deletion validation could also benefit from this technology.


July 19, 2019  |  

Assessing structural variation in a personal genome-towards a human reference diploid genome.

Characterizing large genomic variants is essential to expanding the research and clinical applications of genome sequencing. While multiple data types and methods are available to detect these structural variants (SVs), they remain less characterized than smaller variants because of SV diversity, complexity, and size. These challenges are exacerbated by the experimental and computational demands of SV analysis. Here, we characterize the SV content of a personal genome with Parliament, a publicly available consensus SV-calling infrastructure that merges multiple data types and SV detection methods.We demonstrate Parliament’s efficacy via integrated analyses of data from whole-genome array comparative genomic hybridization, short-read next-generation sequencing, long-read (Pacific BioSciences RSII), long-insert (Illumina Nextera), and whole-genome architecture (BioNano Irys) data from the personal genome of a single subject (HS1011). From this genome, Parliament identified 31,007 genomic loci between 100 bp and 1 Mbp that are inconsistent with the hg19 reference assembly. Of these loci, 9,777 are supported as putative SVs by hybrid local assembly, long-read PacBio data, or multi-source heuristics. These SVs span 59 Mbp of the reference genome (1.8%) and include 3,801 events identified only with long-read data. The HS1011 data and complete Parliament infrastructure, including a BAM-to-SV workflow, are available on the cloud-based service DNAnexus.HS1011 SV analysis reveals the limits and advantages of multiple sequencing technologies, specifically the impact of long-read SV discovery. With the full Parliament infrastructure, the HS1011 data constitute a public resource for novel SV discovery, software calibration, and personal genome structural variation analysis.


July 19, 2019  |  

Long-read single molecule sequencing to resolve tandem gene copies: The Mst77Y region on the Drosophila melanogaster Y chromosome.

The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295-307) found 18 Y-linked copies of Mst77F (“Mst77Y”), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction-induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. Copyright © 2015 Krsticevic et al.


July 19, 2019  |  

Assembly and diploid architecture of an individual human genome via single-molecule technologies.

We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.


July 19, 2019  |  

Single-Molecule Real-Time Sequencing combined with optical mapping yields completely finished fungal genome.

Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contiguous and complete eukaryotic genome assembly, focusing on the filamentous fungus Verticillium dahliae. Compared with Illumina-based assemblies of the V. dahliae genome, hybrid assemblies that also include PacBio-generated long reads establish superior contiguity. Intriguingly, provided that sufficient sequence depth is reached, assemblies solely based on PacBio reads outperform hybrid assemblies and even result in fully assembled chromosomes. Furthermore, the addition of optical map data allowed us to produce a gapless and complete V. dahliae genome assembly of the expected eight chromosomes from telomere to telomere. Consequently, we can now study genomic regions that were previously not assembled or poorly assembled, including regions that are populated by repetitive sequences, such as transposons, allowing us to fully appreciate an organism’s biological complexity. Our data show that a combination of PacBio-generated long reads and optical mapping can be used to generate complete and gapless assemblies of fungal genomes.Studying whole-genome sequences has become an important aspect of biological research. The advent of next-generation sequencing (NGS) technologies has nowadays brought genomic science within reach of most research laboratories, including those that study nonmodel organisms. However, most genome sequencing initiatives typically yield (highly) fragmented genome assemblies. Nevertheless, considerable relevant information related to genome structure and evolution is likely hidden in those nonassembled regions. Here, we investigated a diverse set of strategies to obtain gapless genome assemblies, using the genome of a typical ascomycete fungus as the template. Eventually, we were able to show that a combination of PacBio-generated long reads and optical mapping yields a gapless telomere-to-telomere genome assembly, allowing in-depth genome analyses to facilitate functional studies into an organism’s biology. Copyright © 2015 Faino et al.


July 19, 2019  |  

Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing.

Colorectal cancer (CRC) represents one of the most prevalent and lethal malignant neoplasms and every individual of age 50 and above should undergo regular CRC screening. Currently, the most effective preventive screening procedure to detect adenomatous polyps, the precursors to CRC, is colonoscopy. Since every colorectal cancer starts as a polyp, detecting all polyps and removing them is crucial. By exactly doing that, colonoscopy reduces CRC incidence by 80%, however it is an invasive procedure that might have unpleasant and, in rare occasions, dangerous side effects. Despite numerous efforts over the past two decades, a non-invasive screening method for the general population with detection rates for adenomas and CRC similar to that of colonoscopy has not yet been established. Recent advances in next generation sequencing technologies have yet to be successfully applied to this problem, because the detection of rare mutations has been hindered by the systematic biases due to sequencing context and the base calling quality of NGS. We present the first study that applies the high read accuracy and depth of single molecule, real time, circular consensus sequencing (SMRT-CCS) to the detection of mutations in stool DNA in order to provide a non-invasive, sensitive and accurate test for CRC. In stool DNA isolated from patients diagnosed with adenocarcinoma, we are able to detect mutations at frequencies below 0.5% with no false positives. This approach establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and the early stage adenomas that lead to CRC.


July 19, 2019  |  

Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships.

Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33-35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution.


July 19, 2019  |  

A supergene determines highly divergent male reproductive morphs in the ruff.

Three strikingly different alternative male mating morphs (aggressive ‘independents’, semicooperative ‘satellites’ and female-mimic ‘faeders’) coexist as a balanced polymorphism in the ruff, Philomachus pugnax, a lek-breeding wading bird. Major differences in body size, ornamentation, and aggressive and mating behaviors are inherited as an autosomal polymorphism. We show that development into satellites and faeders is determined by a supergene consisting of divergent alternative, dominant and non-recombining haplotypes of an inversion on chromosome 11, which contains 125 predicted genes. Independents are homozygous for the ancestral sequence. One breakpoint of the inversion disrupts the essential CENP-N gene (encoding centromere protein N), and pedigree analysis confirms the lethality of homozygosity for the inversion. We describe new differences in behavior, testis size and steroid metabolism among morphs and identify polymorphic genes within the inversion that are likely to contribute to the differences among morphs in reproductive traits.


July 19, 2019  |  

Detection and screening of chromosomal rearrangements in uterine leiomyomas by long-distance inverse PCR.

Genome instability is a hallmark of many tumors and recently, next-generation sequencing methods have enabled analyses of tumor genomes at an unprecedented level. Studying rearrangement-prone chromosomal regions (putative “breakpoint hotspots”) in detail, however, necessitates molecular assays that can detect de novo DNA fusions arising from these hotspots. Here we demonstrate the utility of a long-distance inverse PCR-based method for the detection and screening of de novo DNA rearrangements in uterine leiomyomas, one of the most common types of human neoplasm. This assay allows in principle any genomic region suspected of instability to be queried for DNA rearrangements originating there. No prior knowledge of the identity of the fusion partner chromosome is needed. We used this method to screen uterine leiomyomas for rearrangements at genomic locations known to be rearrangement-prone in this tumor type: upstream HMGA2 and within RAD51B. We identified a novel DNA rearrangement upstream of HMGA2 that had gone undetected in an earlier whole-genome sequencing study. In more than 30 additional uterine leiomyoma samples, not analyzed by whole-genome sequencing previously, no rearrangements were observed within the 1,107 bp and 1,996 bp assayed in the RAD51B and HMGA2 rearrangement hotspots. Our findings show that long-distance inverse PCR is a robust, sensitive, and cost-effective method for the detection and screening of DNA rearrangements from solid tumors that should be useful for many diagnostic applications. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.


July 19, 2019  |  

Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution.

The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ~20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr. Copyright © 2016 Davey et al.


July 19, 2019  |  

A method for near full-length amplification and sequencing for six hepatitis C virus genotypes.

Hepatitis C virus (HCV) is a rapidly evolving RNA virus that has been classified into seven genotypes. All HCV genotypes cause chronic hepatitis, which ultimately leads to liver diseases such as cirrhosis. The genotypes are unevenly distributed across the globe, with genotypes 1 and 3 being the most prevalent. Until recently, molecular epidemiological studies of HCV evolution within the host and at the population level have been limited to the analyses of partial viral genome segments, as it has been technically challenging to amplify and sequence the full-length of the 9.6 kb HCV genome. Although recent improvements have been made in full genome sequencing methodologies, these protocols are still either limited to a specific genotype or cost-inefficient.In this study we describe a genotype-specific protocol for the amplification and sequencing of the near-full length genome of all six major HCV genotypes. We applied this protocol to 122 HCV positive clinical samples, and had a successful genome amplification rate of 90 %, when the viral load was greater than 15,000 IU/ml. The assay was shown to have a detection limit of 1-3 cDNA copies per reaction. The method was tested with both Illumina and PacBio single molecule, real-time (SMRT) sequencing technologies. Illumina sequencing resulted in deep coverage and allowed detection of rare variants as well as HCV co-infection with multiple genotypes. The application of the method with PacBio RS resulted in sequence reads greater than 9 kb that covered the near full-length HCV amplicon in a single read and enabled analysis of the near full-length quasispecies.The protocol described herein can be utilised for rapid amplification and sequencing of the near-full length HCV genome in a cost efficient manner suitable for a wide range of applications.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.