Menu
September 22, 2019  |  

Distinguishing highly similar gene isoforms with a clustering-based bioinformatics analysis of PacBio single-molecule long reads.

Gene isoforms are commonly found in both prokaryotes and eukaryotes. Since each isoform may perform a specific function in response to changing environmental conditions, studying the dynamics of gene isoforms is important in understanding biological processes and disease conditions. However, genome-wide identification of gene isoforms is technically challenging due to the high degree of sequence identity among isoforms. Traditional targeted sequencing approach, involving Sanger sequencing of plasmid-cloned PCR products, has low throughput and is very tedious and time-consuming. Next-generation sequencing technologies such as Illumina and 454 achieve high throughput but their short read lengths are a critical barrier to accurate assembly of highly similar gene isoforms, and may result in ambiguities and false joining during sequence assembly. More recently, the third generation sequencer represented by the PacBio platform offers sufficient throughput and long reads covering the full length of typical genes, thus providing a potential to reliably profile gene isoforms. However, the PacBio long reads are error-prone and cannot be effectively analyzed by traditional assembly programs.We present a clustering-based analysis pipeline integrated with PacBio sequencing data for profiling highly similar gene isoforms. This approach was first evaluated in comparison to de novo assembly of 454 reads using a benchmark admixture containing 10 known, cloned msg genes encoding the major surface glycoprotein of Pneumocystis jirovecii. All 10 msg isoforms were successfully reconstructed with the expected length (~1.5 kb) and correct sequence by the new approach, while 454 reads could not be correctly assembled using various assembly programs. When using an additional benchmark admixture containing 22 known P. jirovecii msg isoforms, this approach accurately reconstructed all but 4 these isoforms in their full-length (~3 kb); these 4 isoforms were present in low concentrations in the admixture. Finally, when applied to the original clinical sample from which the 22 known msg isoforms were cloned, this approach successfully identified not only all known isoforms accurately (~3 kb each) but also 48 novel isoforms.PacBio sequencing integrated with the clustering-based analysis pipeline achieves high-throughput and high-resolution discrimination of highly similar sequences, and can serve as a new approach for genome-wide characterization of gene isoforms and other highly repetitive sequences.


September 22, 2019  |  

Genome-wide identification and analysis of the ALTERNATIVE OXIDASE gene family in diploid and hexaploid wheat.

A comprehensive understanding of wheat responses to environmental stress will contribute to the long-term goal of feeding the planet. ALERNATIVE OXIDASE (AOX) genes encode proteins involved in a bypass of the electron transport chain and are also known to be involved in stress tolerance in multiple species. Here, we report the identification and characterization of the AOX gene family in diploid and hexaploid wheat. Four genes each were found in the diploid ancestors Triticum urartu, and Aegilops tauschii, and three in Aegilops speltoides. In hexaploid wheat (Triticum aestivum), 20 genes were identified, some with multiple splice variants, corresponding to a total of 24 proteins for those with observed transcription and translation. These proteins were classified as AOX1a, AOX1c, AOX1e or AOX1d via phylogenetic analysis. Proteins lacking most or all signature AOX motifs were assigned to putative regulatory roles. Analysis of protein-targeting sequences suggests mixed localization to the mitochondria and other organelles. In comparison to the most studied AOX from Trypanosoma brucei, there were amino acid substitutions at critical functional domains indicating possible role divergence in wheat or grasses in general. In hexaploid wheat, AOX genes were expressed at specific developmental stages as well as in response to both biotic and abiotic stresses such as fungal pathogens, heat and drought. These AOX expression patterns suggest a highly regulated and diverse transcription and expression system. The insights gained provide a framework for the continued and expanded study of AOX genes in wheat for stress tolerance through breeding new varieties, as well as resistance to AOX-targeted herbicides, all of which can ultimately be used synergistically to improve crop yield.


September 22, 2019  |  

A high-quality annotated transcriptome of swine peripheral blood.

High throughput gene expression profiling assays of peripheral blood are widely used in biomedicine, as well as in animal genetics and physiology research. Accurate, comprehensive, and precise interpretation of such high throughput assays relies on well-characterized reference genomes and/or transcriptomes. However, neither the reference genome nor the peripheral blood transcriptome of the pig have been sufficiently assembled and annotated to support such profiling assays in this emerging biomedical model organism. We aimed to assemble published and novel RNA-seq data to provide a comprehensive, well-annotated blood transcriptome for pigs by integrating a de novo assembly with a genome-guided assembly.A de novo and a genome-guided transcriptome of porcine whole peripheral blood was assembled with ~162 million pairs of paired-end and ~183 million single-end, trimmed and normalized Illumina RNA-seq reads (~6 billion initial reads from 146 RNA-seq libraries) from five independent studies by using the Trinity and Cufflinks software, respectively. We then removed putative transcripts (PTs) of low confidence from both assemblies and merged the remaining PTs into an integrated transcriptome consisting of 132,928 PTs, with 126,225 (~95%) PTs from the de novo assembly and more than 91% of PTs spliced. In the integrated transcriptome, ~90% and 63% of PTs had significant sequence similarity to sequences in the NCBI NT and NR databases, respectively; 68,754 (~52%) PTs were annotated with 15,965 unique gene ontology (GO) terms; and 7618 PTs annotated with Enzyme Commission codes were assigned to 134 pathways curated by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Full exon-intron junctions of 17,528 PTs were validated by PacBio IsoSeq full-length cDNA reads from 3 other porcine tissues, NCBI pig RefSeq mRNAs and transcripts from Ensembl Sscrofa10.2 annotation. Completeness of the 5′ termini of 37,569 PTs was validated by public cap analysis of gene expression (CAGE) data. By comparison to the Ensembl transcripts, we found that (1) the deduced precursors of 54,402 PTs shared at least one intron or exon with those of 18,437 Ensembl transcripts; (2) 12,262 PTs had both longer 5′ and 3′ termini than their maximally overlapping Ensembl transcripts; and (3) 41,838 spliced PTs were totally missing from the Sscrofa10.2 annotation. Similar results were obtained when the PTs were compared to the pig NCBI RefSeq mRNA collection.We built, validated and annotated a comprehensive porcine blood transcriptome with significant improvement over the annotation of Ensembl Sscrofa10.2 and the pig NCBI RefSeq mRNAs, and laid a foundation for blood-based high throughput transcriptomic assays in pigs and for advancing annotation of the pig genome.


September 22, 2019  |  

Isoform sequencing provides a more comprehensive view of the Panax ginseng transcriptome.

Korean ginseng (Panax ginseng C.A. Meyer) has been widely used for medicinal purposes and contains potent plant secondary metabolites, including ginsenosides. To obtain transcriptomic data that offers a more comprehensive view of functional genomics in P. ginseng, we generated genome-wide transcriptome data from four different P. ginseng tissues using PacBio isoform sequencing (Iso-Seq) technology. A total of 135,317 assembled transcripts were generated with an average length of 3.2 kb and high assembly completeness. Of those unigenes, 67.5% were predicted to be complete full-length (FL) open reading frames (ORFs) and exhibited a high gene annotation rate. Furthermore, we successfully identified unique full-length genes involved in triterpenoid saponin synthesis and plant hormonal signaling pathways, including auxin and cytokinin. Studies on the functional genomics of P. ginseng seedlings have confirmed the rapid upregulation of negative feed-back loops by auxin and cytokinin signaling cues. The conserved evolutionary mechanisms in the auxin and cytokinin canonical signaling pathways of P. ginseng are more complex than those in Arabidopsis thaliana. Our analysis also revealed a more detailed view of transcriptome-wide alternative isoforms for 88 genes. Finally, transposable elements (TEs) were also identified, suggesting transcriptional activity of TEs in P. ginseng. In conclusion, our results suggest that long-read, full-length or partial-unigene data with high-quality assemblies are invaluable resources as transcriptomic references in P. ginseng and can be used for comparative analyses in closely related medicinal plants.


September 22, 2019  |  

Long-read sequencing revealed an extensive transcript complexity in herpesviruses.

Long-read sequencing (LRS) techniques are very recent advancements, but they have already been used for transcriptome research in all of the three subfamilies of herpesviruses. These techniques have multiplied the number of known transcripts in each of the examined viruses. Meanwhile, they have revealed a so far hidden complexity of the herpesvirus transcriptome with the discovery of a large number of novel RNA molecules, including coding and non-coding RNAs, as well as transcript isoforms, and polycistronic RNAs. Additionally, LRS techniques have uncovered an intricate meshwork of transcriptional overlaps between adjacent and distally located genes. Here, we review the contribution of LRS to herpesvirus transcriptomics and present the complexity revealed by this technology, while also discussing the functional significance of this phenomenon.


September 22, 2019  |  

A workflow for studying specialized metabolism in nonmodel eukaryotic organisms

Eukaryotes contain a diverse tapestry of specialized metabolites, many of which are of significant pharmaceutical and industrial importance to humans. Nevertheless, exploration of specialized metabolic pathways underlying specific chemical traits in nonmodel eukaryotic organisms has been technically challenging and historically lagged behind that of the bacterial systems. Recent advances in genomics, metabolomics, phylogenomics, and synthetic biology now enable a new workflow for interrogating unknown specialized metabolic systems in nonmodel eukaryotic hosts with greater efficiency and mechanistic depth. This chapter delineates such workflow by providing a collection of state-of-the-art approaches and tools, ranging from multiomics-guided candidate gene identification to in vitro and in vivo functional and structural characterization of specialized metabolic enzymes. As already demonstrated by several recent studies, this new workflow opens up a gateway into the largely untapped world of natural product biochemistry in eukaryotes. © 2016 Elsevier Inc. All rights reserved.


September 22, 2019  |  

A comprehensive analysis of alternative splicing in paleopolyploid maize.

Identifying and characterizing alternative splicing (AS) enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping) do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs) identified splicing QTL (sQTL). The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.


September 22, 2019  |  

Exploiting single-molecule transcript sequencing for eukaryotic gene prediction.

We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.


September 22, 2019  |  

Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

Currently, bacterial 16S rRNA gene analyses are based on sequencing of individual variable regions of the 16S rRNA gene (Kozich, et al Appl Environ Microbiol 79:5112-5120, 2013).This short read approach can introduce biases. Thus, full-length bacterial 16S rRNA gene sequencing is needed to reduced biases. A new alternative for full-length bacterial 16S rRNA gene sequencing is offered by PacBio single molecule, real-time (SMRT) technology. The aim of our study was to validate PacBio P6 sequencing chemistry using three approaches: 1) sequencing the full-length bacterial 16S rRNA gene from a single bacterial species Staphylococcus aureus to analyze error modes and to optimize the bioinformatics pipeline; 2) sequencing the full-length bacterial 16S rRNA gene from a pool of 50 different bacterial colonies from human stool samples to compare with full-length bacterial 16S rRNA capillary sequence; and 3) sequencing the full-length bacterial 16S rRNA genes from 11 vaginal microbiome samples and compare with in silico selected bacterial 16S rRNA V1V2 gene region and with bacterial 16S rRNA V1V2 gene regions sequenced using the Illumina MiSeq.Our optimized bioinformatics pipeline for PacBio sequence analysis was able to achieve an error rate of 0.007% on the Staphylococcus aureus full-length 16S rRNA gene. Capillary sequencing of the full-length bacterial 16S rRNA gene from the pool of 50 colonies from stool identified 40 bacterial species of which up to 80% could be identified by PacBio full-length bacterial 16S rRNA gene sequencing. Analysis of the human vaginal microbiome using the bacterial 16S rRNA V1V2 gene region on MiSeq generated 129 operational taxonomic units (OTUs) from which 70 species could be identified. For the PacBio, 36,000 sequences from over 58,000 raw reads could be assigned to a barcode, and the in silico selected bacterial 16S rRNA V1V2 gene region generated 154 OTUs grouped into 63 species, of which 62% were shared with the MiSeq dataset. The PacBio full-length bacterial 16S rRNA gene datasets generated 261 OTUs, which were grouped into 52 species, of which 54% were shared with the MiSeq dataset. Alpha diversity index reported a higher diversity in the MiSeq dataset.The PacBio sequencing error rate is now in the same range of the previously widely used Roche 454 sequencing platform and current MiSeq platform. Species-level microbiome analysis revealed some inconsistencies between the full-length bacterial 16S rRNA gene capillary sequencing and PacBio sequencing.


September 22, 2019  |  

Full-length transcriptome survey and expression analysis of Cassia obtusifolia to discover putative genes related to aurantio-obtusin biosynthesis, seed formation and development, and stress response.

The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.


September 22, 2019  |  

Genomic imprinting mediates dosage compensation in a young plant XY system.

Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2-4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.


September 22, 2019  |  

PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme.

High-throughput transcriptome sequencing (RNA-seq) technology promises to discover novel protein-coding and non-coding transcripts, particularly the identification of long non-coding RNAs (lncRNAs) from de novo sequencing data. This requires tools that are not restricted by prior gene annotations, genomic sequences and high-quality sequencing.We present an alignment-free tool called PLEK (predictor of long non-coding RNAs and messenger RNAs based on an improved k-mer scheme), which uses a computational pipeline based on an improved k-mer scheme and a support vector machine (SVM) algorithm to distinguish lncRNAs from messenger RNAs (mRNAs), in the absence of genomic sequences or annotations. The performance of PLEK was evaluated on well-annotated mRNA and lncRNA transcripts. 10-fold cross-validation tests on human RefSeq mRNAs and GENCODE lncRNAs indicated that our tool could achieve accuracy of up to 95.6%. We demonstrated the utility of PLEK on transcripts from other vertebrates using the model built from human datasets. PLEK attained >90% accuracy on most of these datasets. PLEK also performed well using a simulated dataset and two real de novo assembled transcriptome datasets (sequenced by PacBio and 454 platforms) with relatively high indel sequencing errors. In addition, PLEK is approximately eightfold faster than a newly developed alignment-free tool, named Coding-Non-Coding Index (CNCI), and 244 times faster than the most popular alignment-based tool, Coding Potential Calculator (CPC), in a single-threading running manner.PLEK is an efficient alignment-free computational tool to distinguish lncRNAs from mRNAs in RNA-seq transcriptomes of species lacking reference genomes. PLEK is especially suitable for PacBio or 454 sequencing data and large-scale transcriptome data. Its open-source software can be freely downloaded from https://sourceforge.net/projects/plek/files/.


September 22, 2019  |  

Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry.

Alternative splicing (AS) is a key post-transcriptional regulatory mechanism, yet little information is known about its roles in fruit crops. Here, AS was globally analyzed in the wild strawberry Fragaria vesca genome with RNA-seq data derived from different stages of fruit development. The AS landscape was characterized and compared between the single-molecule, real-time (SMRT) and Illumina RNA-seq platform. While SMRT has a lower sequencing depth, it identifies more genes undergoing AS (57.67% of detected multiexon genes) when it is compared with Illumina (33.48%), illustrating the efficacy of SMRT in AS identification. We investigated different modes of AS in the context of fruit development; the percentage of intron retention (IR) is markedly reduced whereas that of alternative acceptor sites (AA) is significantly increased post-fertilization when compared with pre-fertilization. When all the identified transcripts were combined, a total of 66.43% detected multiexon genes in strawberry undergo AS, some of which lead to a gain or loss of conserved domains in the gene products. The work demonstrates that SMRT sequencing is highly powerful in AS discovery and provides a rich data resource for later functional studies of different isoforms. Further, shifting AS modes may contribute to rapid changes of gene expression during fruit set.© 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.


September 22, 2019  |  

Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations.

We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score = 0.8) in MPMs. We identified recurrent mutations in several genes, including SF3B1 (~2%; 4/216) and TRAF7 (~2%; 5/216). SF3B1-mutant samples showed a splicing profile distinct from that of wild-type tumors. TRAF7 alterations occurred primarily in the WD40 domain and were, except in one case, mutually exclusive with NF2 alterations. We found recurrent gene fusions and splice alterations to be frequent mechanisms for inactivation of NF2, BAP1 and SETD2. Through integrated analyses, we identified alterations in Hippo, mTOR, histone methylation, RNA helicase and p53 signaling pathways in MPMs.


September 22, 2019  |  

ALE: a generic assembly likelihood evaluation framework for assessing the accuracy of genome and metagenome assemblies.

Researchers need general purpose methods for objectively evaluating the accuracy of single and metagenome assemblies and for automatically detecting any errors they may contain. Current methods do not fully meet this need because they require a reference, only consider one of the many aspects of assembly quality or lack statistical justification, and none are designed to evaluate metagenome assemblies.In this article, we present an Assembly Likelihood Evaluation (ALE) framework that overcomes these limitations, systematically evaluating the accuracy of an assembly in a reference-independent manner using rigorous statistical methods. This framework is comprehensive, and integrates read quality, mate pair orientation and insert length (for paired-end reads), sequencing coverage, read alignment and k-mer frequency. ALE pinpoints synthetic errors in both single and metagenomic assemblies, including single-base errors, insertions/deletions, genome rearrangements and chimeric assemblies presented in metagenomes. At the genome level with real-world data, ALE identifies three large misassemblies from the Spirochaeta smaragdinae finished genome, which were all independently validated by Pacific Biosciences sequencing. At the single-base level with Illumina data, ALE recovers 215 of 222 (97%) single nucleotide variants in a training set from a GC-rich Rhodobacter sphaeroides genome. Using real Pacific Biosciences data, ALE identifies 12 of 12 synthetic errors in a Lambda Phage genome, surpassing even Pacific Biosciences’ own variant caller, EviCons. In summary, the ALE framework provides a comprehensive, reference-independent and statistically rigorous measure of single genome and metagenome assembly accuracy, which can be used to identify misassemblies or to optimize the assembly process.ALE is released as open source software under the UoI/NCSA license at http://www.alescore.org. It is implemented in C and Python.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.