fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Autologous cell therapy approach for Duchenne muscular dystrophy using PiggyBac transposons and mesoangioblasts.

Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating…

Read More »

Sunday, September 22, 2019

Size and content of the sex-determining region of the Y chromosome in dioecious Mercurialis annua, a plant with homomorphic sex chromosomes.

Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua, a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be…

Read More »

Sunday, September 22, 2019

Genome-based evolutionary history of Pseudomonas spp.

Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in…

Read More »

Sunday, September 22, 2019

Transcriptional regulation of cysteine and methionine metabolism in Lactobacillus paracasei FAM18149.

Lactobacillus paracasei is common in the non-starter lactic acid bacteria (LAB) community of raw milk cheeses. This species can significantly contribute to flavor formation through amino acid metabolism. In this study, the DNA and RNA of L. paracasei FAM18149 were sequenced using next-generation sequencing technologies to reconstruct the metabolism of the sulfur-containing amino acids cysteine and methionine. Twenty-three genes were found to be involved in cysteine biosynthesis, the conversion of cysteine to methionine and vice versa, the S-adenosylmethionine recycling pathway, and the transport of sulfur-containing amino acids. Additionally, six methionine-specific T-boxes and one cysteine-specific T-box were found. Five of these…

Read More »

Sunday, September 22, 2019

The complete methylome of an entomopathogenic bacterium reveals the existence of loci with unmethylated adenines.

DNA methylation can serve to control diverse phenomena in eukaryotes and prokaryotes, including gene regulation leading to cell differentiation. In bacteria, DNA methylomes (i.e., methylation state of each base of the whole genome) have been described for several species, but methylome profile variation during the lifecycle has rarely been studied, and only in a few model organisms. Moreover, major phenotypic changes have been reported in several bacterial strains with a deregulated methyltransferase, but the corresponding methylome has rarely been described. Here we report the first methylome description of an entomopathogenic bacterium, Photorhabdus luminescens. Eight motifs displaying a high rate of…

Read More »

Sunday, September 22, 2019

Update on Tetracycline Susceptibility of Pediococcus acidilactici Based on Strains Isolated from Swiss Cheese and Whey.

Bacterial strains used as starter cultures in the production of fermented foods may act as reservoirs for antibiotic resistance (AbR) genes. To avoid the introduction of such genes into the food chain, the presence of acquired AbR in bacterial strains added to food must be tested. Standard protocols and microbiological cut-off values have been defined to provide practitioners with a basis for evaluating whether their bacterial isolates harbor an acquired resistance to a given antibiotic. Here, we tested the AbR of 24 strains of Pediococcus acidilactici by using the standard protocol and microbiological cut-off values recommended by the European Food…

Read More »

Sunday, September 22, 2019

Integrative haplotype estimation with sub-linear complexity

The number of human genomes being genotyped or sequenced increases exponentially and efficient haplotype estimation methods able to handle this amount of data are now required. Here, we present a new method, SHAPEIT4, which substantially improves upon other methods to process large genotype and high coverage sequencing datasets. It notably exhibits sub-linear scaling with sample size, provides highly accurate haplotypes and allows integrating external phasing information such as large reference panels of haplotypes, collections of pre-phased variants and long sequencing reads. We provide SHAPET4 in an open source format on https://odelaneau.github.io/shapeit4/ and demonstrate its performance in terms of accuracy and…

Read More »

Friday, July 19, 2019

Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle.

The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters. To explore the global extent of this regulatory mechanism, we determined the methylation state of the entire chromosome at every base pair at five time points in the cell cycle using single-molecule, real-time sequencing. The methylation state of 4,515 GANTC sites, preferentially…

Read More »

Friday, July 19, 2019

Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility.

Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated…

Read More »

Friday, July 19, 2019

Comparative genomics of two sequential Candida glabrata clinical isolates.

Candida glabrata is an important fungal pathogen which develops rapid antifungal resistance in treated patients. It is known that azole treatments lead to antifungal resistance in this fungal species and that multidrug efflux transporters are involved in this process. Specific mutations in the transcriptional regulator PDR1 result in upregulation of the transporters. In addition, we showed that the PDR1 mutations can contribute to enhance virulence in animal models. In this study, we were interested to compare genomes of two specific C. glabrata-related isolates, one of which was azole susceptible (DSY562) while the other was azole resistant (DSY565). DSY565 contained a…

Read More »

Friday, July 19, 2019

Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by…

Read More »

Friday, July 19, 2019

The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity.Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon…

Read More »

Friday, July 19, 2019

Male-killing toxin in a bacterial symbiont of Drosophila.

Several lineages of symbiotic bacteria in insects selfishly manipulate host reproduction to spread in a population 1 , often by distorting host sex ratios. Spiroplasma poulsonii2,3 is a helical and motile, Gram-positive symbiotic bacterium that resides in a wide range of Drosophila species 4 . A notable feature of S. poulsonii is male killing, whereby the sons of infected female hosts are selectively killed during development1,2. Although male killing caused by S. poulsonii has been studied since the 1950s, its underlying mechanism is unknown. Here we identify an S. poulsonii protein, designated Spaid, whose expression induces male killing. Overexpression of…

Read More »

Friday, July 19, 2019

Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39.

A precise understanding of the genomic organization into transcriptional units and their regulation is essential for our comprehension of opportunistic human pathogens and how they cause disease. Using single-molecule real-time (PacBio) sequencing we unambiguously determined the genome sequence of Streptococcus pneumoniae strain D39 and revealed several inversions previously undetected by short-read sequencing. Significantly, a chromosomal inversion results in antigenic variation of PhtD, an important surface-exposed virulence factor. We generated a new genome annotation using automated tools, followed by manual curation, reflecting the current knowledge in the field. By combining sequence-driven terminator prediction, deep paired-end transcriptome sequencing and enrichment of primary…

Read More »

Sunday, July 7, 2019

Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds.

Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives