Menu
April 21, 2020  |  

Complete genome sequences of a H2O2-resistant psychrophilic bacterium Colwellia sp. Arc7-D isolated from Arctic Ocean sediment

Colwellia sp. Arc7-D, a psychrophilic H2O2-resisitant bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Colwellia sp. Arc7-D. The genome has one circular chromosome of 4,305,442?bp (37.67?mol%?G?+?C content), consisting of 3526 coding genes, 77 tRNA genes, as well as five rRNA operons as 16S–23S-5S rRNA and one rRNA operon as 16S-23S-5S-5S. According to KEGG analysis, strain Arc7-D encodes 23 genes related with antioxidant activity including superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase. However, many additional genes affiliated with anti-oxidative stress were also identified, such as aconitase, thioredoxin and ascorbic acid.


April 21, 2020  |  

Genomic and Functional Characterization of the Endophytic Bacillus subtilis 7PJ-16 Strain, a Potential Biocontrol Agent of Mulberry Fruit Sclerotiniose.

Bacillus sp. 7PJ-16, an endophytic bacterium isolated from a healthy mulberry stem and previously identified as Bacillus tequilensis 7PJ-16, exhibits strong antifungal activity and has the capacity to promote plant growth. This strain was studied for its effectiveness as a biocontrol agent to reduce mulberry fruit sclerotiniose in the field and as a growth-promoting agent for mulberry in the greenhouse. In field studies, the cell suspension and supernatant of strain 7PJ-16 exhibited biocontrol efficacy and the lowest disease incidence was reduced down to only 0.80%. In greenhouse experiments, the cell suspension (1.0?×?106 and 1.0?×?105 CFU/mL) and the cell-free supernatant (100-fold and 1000-fold dilution) stimulated mulberry seed germination and promoted mulberry seedling growth. In addition, to accurately identify the 7PJ-16 strain and further explore the mechanisms of its antifungal and growth-promoting properties, the complete genome of this strain was sequenced and annotated. The 7PJ-16 genome is comprised of two circular plasmids and a 4,209,045-bp circular chromosome, containing 4492 protein-coding genes and 116 RNA genes. This strain was ultimately designed as Bacillus subtilis based on core genome sequence analyses using a phylogenomic approach. In this genome, we identified a series of gene clusters that function in the synthesis of non-ribosomal peptides (surfactin, fengycin, bacillibactin, and bacilysin) as well as the ribosome-dependent synthesis of tasA and bacteriocins (subtilin, subtilosin A), which are responsible for the biosynthesis of numerous antimicrobial metabolites. Additionally, several genes with function that promote plant growth, such as indole-3-acetic acid biosynthesis, the production of volatile substances, and siderophores synthesis, were also identified. The information described in this study has established a good foundation for understanding the beneficial interactions between endophytes and host plants, and facilitates the further application of B. subtilis 7PJ-16 as an agricultural biofertilizer and biocontrol agent.


April 21, 2020  |  

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.


April 21, 2020  |  

Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin

Streptomyes spongiicola HNM0071T is a novel marine sponge-associated actinomycete with potential to produce antitumor agents including staurosporine and echinomycin. Here, we present the complete genome sequence of S. spongiicola HNM0071, which consists of a linear chromosome of 7,180,417?bp, 5669 protein coding genes, 18 rRNA genes, and 66 tRNA genes. Twenty-seven putative secondary metabolite biosynthetic gene clusters were found in the genome. Among them, the staurosporine and echinomycin gene clusters have been described completely. The complete genome information presented here will enable us to investigate the biosynthetic mechanism of two well-known antitumor antibiotics and to discover novel secondary metabolites with potential antitumor activities.


April 21, 2020  |  

eIF5B gates the transition from translation initiation to elongation.

Translation initiation determines both the quantity and identity of the protein that is encoded in an mRNA by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors prepare ribosomes for polypeptide synthesis; however, the underlying dynamics of this process remain unclear1,2. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here we use in vitro single-molecule fluorescence microscopy approaches in a purified yeast Saccharomyces cerevisiae translation system to monitor directly, in real time, the pathways of late translation initiation and the transition to elongation. This transition was slower in our eukaryotic system than that reported for Escherichia coli3-5. The slow entry to elongation was defined by a long residence time of eukaryotic initiation factor 5B (eIF5B) on the 80S ribosome after the joining of individual ribosomal subunits-a process that is catalysed by this universally conserved initiation factor. Inhibition of the GTPase activity of eIF5B after the joining of ribosomal subunits prevented the dissociation of eIF5B from the 80S complex, thereby preventing elongation. Our findings illustrate how the dissociation of eIF5B serves as a kinetic checkpoint for the transition from initiation to elongation, and how its release may be governed by a change in the conformation of the ribosome complex that triggers GTP hydrolysis.


April 21, 2020  |  

A New Species of the ?-Proteobacterium Francisella, F. adeliensis Sp. Nov., Endocytobiont in an Antarctic Marine Ciliate and Potential Evolutionary Forerunner of Pathogenic Species.

The study of the draft genome of an Antarctic marine ciliate, Euplotes petzi, revealed foreign sequences of bacterial origin belonging to the ?-proteobacterium Francisella that includes pathogenic and environmental species. TEM and FISH analyses confirmed the presence of a Francisella endocytobiont in E. petzi. This endocytobiont was isolated and found to be a new species, named F. adeliensis sp. nov.. F. adeliensis grows well at wide ranges of temperature, salinity, and carbon dioxide concentrations implying that it may colonize new organisms living in deeply diversified habitats. The F. adeliensis genome includes the igl and pdp gene sets (pdpC and pdpE excepted) of the Francisella pathogenicity island needed for intracellular growth. Consistently with an F. adeliensis ancient symbiotic lifestyle, it also contains a single insertion-sequence element. Instead, it lacks genes for the biosynthesis of essential amino acids such as cysteine, lysine, methionine, and tyrosine. In a genome-based phylogenetic tree, F. adeliensis forms a new early branching clade, basal to the evolution of pathogenic species. The correlations of this clade with the other clades raise doubts about a genuine free-living nature of the environmental Francisella species isolated from natural and man-made environments, and suggest to look at F. adeliensis as a pioneer in the Francisella colonization of eukaryotic organisms.


April 21, 2020  |  

Complete genome sequence of Salinigranum rubrum GX10T, an extremely halophilic archaeon isolated from a marine solar saltern

Since the first genome of a halophilic archaeon was sequenced in 2000, microbes inhabiting hypersaline environments have been investigated largely based on genomic characteristics. Salinigranum rubrum GX10T, the type species of the genus Salinigranum belonging to the euryarchaeal family Haloferacaceae, was isolated from the brine of Gangxi marine solar saltern near Weihai, China. Similar with most members of the class Halobacteria, S. rubrum GX10T is an extreme halophile requiring at least 1.5?M NaCl for growth and 3.1?M NaCl for optimum growth. We sequenced and annotated the complete genome of S. rubrum GX10T, which was found to be 4,973,118?bp and comprise one chromosome and five plasmids. A total of 4966 protein coding genes, 47 tRNA genes and 6 rRNA genes were obtained. The isoelectric point distribution for the predict proteins was observed with an acidic peak, which reflected the adaption of S. rubrum GX10T to the halophilic environment. Genes related to potassium uptake, sodium efflux as well as compatible-solute biosynthesis and transport were identified, which were responsible for the resistance to osmotic stress. Genes related to heavy metal resistance, CRISPR-Cas system and light transform system were also detected. This study reports the first genome in the genus Salinigranum and provides a basis for understanding resistance strategies to harsh environment at the genomic level.


April 21, 2020  |  

Mitochondrial DNA and their nuclear copies in the parasitic wasp Pteromalus puparum: A comparative analysis in Chalcidoidea.

Chalcidoidea (chalcidoid wasps) are an abundant and megadiverse insect group with both ecological and economical importance. Here we report a complete mitochondrial genome in Chalcidoidea from Pteromalus puparum (Pteromalidae). Eight tandem repeats followed by 6 reversed repeats were detected in its 3308?bp control region. This long and complex control region may explain failures of amplifying and sequencing of complete mitochondrial genomes in some chalcidoids. In addition to 37 typical mitochondrial genes, an extra identical isoleucine tRNA (trnI) was detected at the opposite end of the control region. This recent mitochondrial gene duplication indicates that gene arrangements in chalcidoids are ongoing. A comparison among available chalcidoid mitochondrial genomes reveals rapid gene order rearrangements overall and high protein substitution rates in most chalcidoid taxa. In addition, we identified 24 nuclear sequences of mitochondrial origin (NUMTs) in P. puparum, summing up to 9989?bp, with 3617?bp of these NUMTs originating from mitochondrial coding regions. NUMTs abundance in P. puparum is only one-twelfth of that in its relative, Nasonia vitripennis. Based on phylogenetic analysis, we provide evidence that a faster nuclear degradation rate contributes to the reduced NUMT numbers in P. puparum. Overall, our study shows unusually high rates of mitochondrial evolution and considerable variation in NUMT accumulation in Chalcidoidea. Copyright © 2018. Published by Elsevier B.V.


April 21, 2020  |  

The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages.

Despite their ubiquity, relatively few bacteriophages have been characterized. Here, we set out to explore Caulobacter bacteriophages (caulophages) in the rhizosphere and characterized Kronos, the first caulophage isolated from the rhizosphere. Kronos is a member of the Siphoviridae family since it has a long flexible tail. In addition, an analysis of the Kronos genome indicated that many of the predicted proteins were distantly related to those of bacteriophages in the lambdoid family. Consistent with this observation, we were able to demonstrate the presence of cos sites that are similar to those found at the ends of lambdoid phage genomes. Moreover, Kronos displayed a relatively rare head and tail morphology compared to other caulophages but was similar to that of the lambdoid phages. Taken together, these data indicate that Kronos is distantly related to lambdoid phages and may represent a new Siphoviridae genus.


April 21, 2020  |  

Mitochondrial genome characterization of Melipona bicolor: Insights from the control region and gene expression data.

The stingless bee Melipona bicolor is the only bee in which true polygyny occurs. Its mitochondrial genome was first sequenced in 2008, but it was incomplete and no information about its transcription was known. We combined short and long reads of M. bicolor DNA with RNASeq data to obtain insights about mitochondrial evolution and gene expression in bees. The complete genome has 15,001?bp, including a control region of 255?bp that contains all conserved structures described in honeybees with the highest AT content reported so far for bees (98.1%), displaying a compact but functional region. Gene expression control is similar to other insects however unusual patterns of expression may suggest the existence of different isoforms for the mitochondrially encoded 12S rRNA. Results reveal unique and shared features of the mitochondrial genome in terms of sequence evolution and gene expression making M. bicolor an interesting model to study mitochondrial genomic evolution. Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020  |  

Complete genome of Pseudoalteromonas atlantica ECSMB14104, a Gammaproteobacterium inducing mussel settlement

Pseudoalteromonas is widely distributed in the marine environments and the biofilms formed by Pseudoalteromonas promote settlement of many species of invertebrates. Here, we show the complete genome of Pseudoalteromonas atlantica ECSMB14104, which was isolated from biofilms formed in the East China Sea and exhibited inducing activity on the Mytilus coruscus settlement. Complete genome of this strain containsa total of 3325 genes and the GC content of 41.02%. This genomic information is contributed to molecular mechanism of P. atlantica ECSMB14104 regulating mussel settlement.


April 21, 2020  |  

The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita.

Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes. Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide.

Heimuer, Auricularia heimuer, is one of the most famous traditional Chinese foods and medicines, and it is the third most important cultivated mushroom worldwide. The aim of this study is to develop genomic resources for A. heimuer to furnish tools that can be used to study its secondary metabolite production capability, wood degradation ability and biosynthesis of polysaccharides. The genome was obtained from single spore mycelia of the strain Dai 13782 by using combined high-throughput Illumina HiSeq 4000 system with the PacBio RSII long-read sequencing platform. Functional annotation was accomplished by blasting protein sequences with different public available databases to obtain their corresponding annotations. It is 49.76Mb in size with a N50 scaffold size of 1,350,668bp and encodes 16,244 putative predicted genes. This is the first genome-scale assembly and annotation for A. heimuer, which is the third sequenced species in Auricularia. Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Complete genome sequence of the novel agarolytic Catenovulum-like strain CCB-QB4

Members of the genus Catenovulum are recognized for their ability to degrade algal biomass. Here we report the complete genome of Cantenovulum–like strain CCB-QB4, an agarolytic bacterium isolated from the coastal area of Penang, Malaysia. The sequenced genome is composed of a 5,663,044?bp circular chromosome and a 208,085?bp circular plasmid. It contained 4409 protein coding and 83 RNA genes, including 62 tRNAs and 21 rRNAs. The genome of CCB-QB4 contains many agarases, which correlate with the high capacity of the strain to degrade agar. Genome sequencing of CCB-QB4 reveals gene candidates of potential interest in enzymatic industries or applications in the field of polysaccharides degradation.


April 21, 2020  |  

Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential.

Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824?bp circular chromosome and a plasmid of 371,027?bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The molecular cold adaptation analysis in comparison with the genome of 15 mesophilic Pseudomonas species revealed functional insight into the strategies of cold adaptation. The genomic data also revealed the presence of industrially important enzymes.Copyright © 2018 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.