Menu
April 21, 2020  |  

Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads.

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes. © 2019 John Wiley & Sons Ltd/University College London.


April 21, 2020  |  

Precise temporal regulation of Dux is important for embryo development.

Zygotic genome activation (ZGA) following fertilization is accomplished through a process termed the maternal-to-zygotic transition, during which the maternal RNAs and proteins are degraded and zygotic genome is transcriptionally activated.1 In mice, minor ZGA occurs from S phase of the zygote to G1 phase of the two-cell (2C) embryo, while major ZGA takes place during the middle-to-late 2C stage with a burst of transcription of totipotent cleavage stage-specific genes and retrotransposons.2Dux has been recently identified and considered as a master inducer that regulates the ZGA process.3–5Dux can directly bind and robustly activate 2C stage-specific ZGA transcripts and convert mouse embryonic stem cells (mESCs) to a 2C-like state with unique features that resembles the 2C embryos.4Intriguingly, ~20% embryos with zygotic depletion of Dux unexpectedly reached morula or blastocyst stage even though defective ZGA program was detected.


April 21, 2020  |  

DART-seq: an antibody-free method for global m6A detection.

N6-methyladenosine (m6A) is a widespread RNA modification that influences nearly every aspect of the messenger RNA lifecycle. Our understanding of m6A has been facilitated by the development of global m6A mapping methods, which use antibodies to immunoprecipitate methylated RNA. However, these methods have several limitations, including high input RNA requirements and cross-reactivity to other RNA modifications. Here, we present DART-seq (deamination adjacent to RNA modification targets), an antibody-free method for detecting m6A sites. In DART-seq, the cytidine deaminase APOBEC1 is fused to the m6A-binding YTH domain. APOBEC1-YTH expression in cells induces C-to-U deamination at sites adjacent to m6A residues, which are detected using standard RNA-seq. DART-seq identifies thousands of m6A sites in cells from as little as 10?ng of total RNA and can detect m6A accumulation in cells over time. Additionally, we use long-read DART-seq to gain insights into m6A distribution along the length of individual transcripts.


April 21, 2020  |  

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

The bracteatus pineapple genome and domestication of clonally propagated crops.

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


April 21, 2020  |  

Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings.

To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic classes. Four other plasmids containing 12 different resistance genes, including blaCTX-M-15 and strA/B, were introduced over time, providing additional resistance to aztreonam and streptomycin. Moreover, chromosomal integration of insertion sequence Ecp1-blaCTX-M-15 mediated the inactivation of mgrB responsible for colistin resistance in four isolates from cluster III. To the best of our knowledge, this is the first description of K. pneumoniae ST14 resistant to both carbapenem and colistin in South Korea. Furthermore, although some acquired genes were lost over time, the retention of 12 resistance genes and inactivation of mgrB provided resistance to 13 classes of antibiotics.We describe stepwise changes in OXA-232-producing K. pneumoniae ST14 in vivo over time in terms of antimicrobial resistance. Our findings contribute to our understanding of the evolution of emerging high-risk K. pneumoniae clones and provide reference data for future outbreaks.Copyright © 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Identification and characterization of chicken circovirus from commercial broiler chickens in China.

Circoviruses are found in many species, including mammals, birds, lower vertebrates and invertebrates. To date, there are no reports of circovirus-induced diseases in chickens. In this study, we identified a new strain of chicken circovirus (CCV) by PacBio third-generation sequencing samples from chickens with acute gastroenteritis in a Shandong commercial broiler farm in China. The complete genome of CCV was verified by inverse PCR. Genomic analysis revealed that CCV codes two inverse open reading frames (ORFs), and a potential stem-loop structure was present at the 5′ end with a structure typical of a circular virus. Phylogenetic tree analysis showed that CCV formed an independent branch between mammalian and avian circovirus, and homology analysis indicated that the homology of CCV with 21 other known circoviruses was less than 40%. Thus, this CCV strain represents a new species in the genus Circovirus. The infection rate of CCV in 12 chickens with diarrhoea was 100%, but no CCV was found in healthy chickens, thereby indicating that the novel CCV strain is highly associated with acute infectious gastroenteritis in chickens. The emergence of a novel CCV in commercial broiler chickens is highly concerning for the broiler industry. © 2019 Blackwell Verlag GmbH.


April 21, 2020  |  

A comparison of immunoglobulin IGHV, IGHD and IGHJ genes in wild-derived and classical inbred mouse strains.

The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflect differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ), and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ, and PWD/PhJ), and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline IGHV sequences were inferred in the wild-derived strains, including 247 not curated in the International Immunogenetics Information System. In contrast, 83/84 inferred NOD IGHV genes had previously been observed in C57BL/6 mice. Variability among the strains examined was observed for only a single IGHJ gene, involving a description of a novel allele. In contrast, unexpected variation was found in the IGHD gene loci, with four previously unreported IGHD gene sequences being documented. Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins. This suggests a similar level of diversity is likely present in the IGH loci of other classical inbred strains. This must now be documented if we are to properly understand inter-strain variation in models of antibody-mediated disease. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

A bird’s white-eye view on neosex chromosome evolution

Chromosomal organization is relatively stable among avian species, especially with regards to sex chromosomes. Members of the large Sylvioidea clade however have a pair of neo-sex chromosomes which is unique to this clade and originate from a parallel translocation of a region of the ancestral 4A chromosome on both W and Z chromosomes. Here, we took advantage of this unusual event to study the early stages of sex chromosome evolution. To do so, we sequenced a female (ZW) of two Sylvioidea species, a Zosterops borbonicus and a Z. pallidus. Then, we organized the Z. borbonicus scaffolds along chromosomes and annotated genes. Molecular phylogenetic dating under various methods and calibration sets confidently confirmed the recent diversification of the genus Zosterops (1-3.5 million years ago), thus representing one of the most exceptional rates of diversification among vertebrates. We then combined genomic coverage comparisons of five males and seven females, and homology with the zebra finch genome (Taeniopygia guttata) to identify sex chromosome scaffolds, as well as the candidate chromosome breakpoints for the two translocation events. We observed reduced levels of within-species diversity in both translocated regions and, as expected, even more so on the neoW chromosome. In order to compare the rates of molecular evolution in genomic regions of the autosomal-to-sex transitions, we then estimated the ratios of non-synonymous to synonymous polymorphisms (pN/pS) and substitutions (dN/dS). Based on both ratios, no or little contrast between autosomal and Z genes was observed, thus representing a very different outcome than the higher ratios observed at the neoW genes. In addition, we report significant changes in base composition content for translocated regions on the W and Z chromosomes and a large accumulation of transposable elements (TE) on the newly W region. Our results revealed contrasted signals of molecular evolution changes associated to these autosome-to-sex chromosome transitions, with congruent signals of a W chromosome degeneration yet a surprisingly weak support for a fast-Z effect.


April 21, 2020  |  

Analyses of the Complete Genome Sequence of the Strain Bacillus pumilus ZB201701 Isolated from Rhizosphere Soil of Maize under Drought and Salt Stress.

Bacillus pumilus ZB201701 is a rhizobacterium with the potential to promote plant growth and tolerance to drought and salinity stress. We herein present the complete genome sequence of the Gram-positive bacterium B. pumilus ZB201701, which consists of a linear chromosome with 3,640,542 base pairs, 3,608 protein-coding sequences, 24 ribosomal RNAs, and 80 transfer RNAs. Genome analyses using bioinformatics revealed some of the putative gene clusters involved in defense mechanisms. In addition, activity analyses of the strain under salt and simulated drought stress suggested its potential tolerance to abiotic stress. Plant growth-promoting bacteria-based experiments indicated that the strain promotes the salt tolerance of maize. The complete genome of B. pumilus ZB201701 provides valuable insights into rhizobacteria-mediated salt and drought tolerance and rhizobacteria-based solutions for abiotic stress in agriculture.


April 21, 2020  |  

Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil.

Pseudomonas putida E41 isolated from root interior of Sida hermaphrodita (grown on a field contaminated with heavy metals) showed high biosurfactant activity. In this paper, we describe data from mass spectrometry and genome analysis, to improve our understanding on the phenotypic properties of the strain. Supernatant derived from P. putida E41 liquid culture exhibited a strong decrease in the surface tension accompanied by the ability for emulsion stabilization. We identified extracellular lipopeptides, putisolvin I and II expression but did not detect rhamnolipids. Their presence was confirmed by matrix-assisted laser desorption and ionization (MALDI) TOF/TOF technique. Moreover, ten phospholipids (mainly phosphatidylethanolamines PE 33:1 and PE 32:1) which were excreted by vesicles were also detected. In contrast the bacterial cell pellet was dominated by phosphatidylglycerols (PGs), which were almost absent in the supernatant. It seems that the composition of extracellular (secreted to the environment) and cellular lipids in this strain differs. Long-read sequencing and complete genome reconstruction allowed the identification of a complete putisolvin biosynthesis pathway. In the genome of P. putida E41 were also found all genes involved in glycerophospholipid biosynthesis, and they are likely responsible for the production of detected phospholipids. Overall this is the first report describing the expression of extracellular lipopeptides (identified as putisolvins) and phospholipids by a P. putida strain, which might be explained by the need to adapt to the highly contaminated environment.


April 21, 2020  |  

Complete Genome Sequence of strain WHRI 3811, race 1 of Xanthomonas campestris pv. campestris, the Causal Agent of Black Rot of Cruciferous Vegetables.

Xanthomonas campestris pv. campestris (Xcc) is an important bacterial pathogen that causes black rot and brings about enormous production loss for cruciferous vegetables worldwide. Currently, genome sequences for only a few Xcc isolates are available, most of which are draft ones. Based on the next-generation sequencing (NGS) and single-molecule sequencing in real time (SMRT) technologies, we present here the complete genome sequence of strain WHRI 3811, race 1 of Xcc, which is a type strain that has been extensively used. The genome data will contribute to our understanding of Xcc genomic features, and pave the way for research on Xcc-host interactions.


April 21, 2020  |  

Cultured Epidermal Autografts from Clinically Revertant Skin as a Potential Wound Treatment for Recessive Dystrophic Epidermolysis Bullosa.

Inherited skin disorders have been reported recently to have sporadic normal-looking areas, where a portion of the keratinocytes have recovered from causative gene mutations (revertant mosaicism). We observed a case of recessive dystrophic epidermolysis bullosa treated with cultured epidermal autografts (CEAs), whose CEA-grafted site remained epithelized for 16 years. We proved that the CEA product and the grafted area included cells with revertant mosaicism. Based on these findings, we conducted an investigator-initiated clinical trial of CEAs from clinically revertant skin for recessive dystrophic epidermolysis bullosa. The donor sites were analyzed by genetic analysis, immunofluorescence, electron microscopy, and quantification of the reverted mRNA with deep sequencing. The primary endpoint was the ulcer epithelization rate per patient at 4 weeks after the last CEA application. Three patients with recessive dystrophic epidermolysis bullosa with 8 ulcers were enrolled, and the epithelization rate for each patient at the primary endpoint was 87.7%, 100%, and 57.0%, respectively. The clinical effects were found to persist for at least 76 weeks after CEA transplantation. One of the three patients had apparent revertant mosaicism in the donor skin and in the post-transplanted area. CEAs from clinically normal skin are a potentially well-tolerated treatment for recessive dystrophic epidermolysis bullosa.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Haplotype-Resolved Cattle Genomes Provide Insights Into Structural Variation and Adaptation

We present high quality, phased genome assemblies representative of taurine and indicine cattle, subspecies that differ markedly in productivity-related traits and environmental adaptation. We report a new haplotype-aware scaffolding and polishing pipeline using contigs generated by the trio binning method to produce haplotype-resolved, chromosome-level genome assemblies of Angus (taurine) and Brahman (indicine) cattle breeds. These assemblies were used to identify structural and copy number variants that differentiate the subspecies and we found variant detection was sensitive to the specific reference genome chosen. Six gene families with immune related functions are expanded in the indicine lineage. Assembly of the genomes of both subspecies from a single individual enabled transcripts to be phased to detect allele-specific expression, and to study genome-wide selective sweeps. An indicus-specific extra copy of fatty acid desaturase is under positive selection and may contribute to indicine adaptation to heat and drought.


April 21, 2020  |  

Construction and comparison of three reference-quality genome assemblies for soybean.

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and one of Glycine soja, the closest wild relative of G. max. The G. max assemblies are for widely used U.S. cultivars: the northern line ‘Williams 82’ (Wm82); and the southern line ‘Lee’. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 SNPs/kb between Wm82 and Lee, and 4.7 SNPs/kb between these lines and G. soja. SNP distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgressions and haplotype structure. Comparisons against the U.S. germplasm collection shows placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found ~40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and ~32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for soybean’s domestication and improvement, serving as a basis for future research and crop improvement efforts for this important crop species. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.