Menu
September 22, 2019  |  

Integrative haplotype estimation with sub-linear complexity

The number of human genomes being genotyped or sequenced increases exponentially and efficient haplotype estimation methods able to handle this amount of data are now required. Here, we present a new method, SHAPEIT4, which substantially improves upon other methods to process large genotype and high coverage sequencing datasets. It notably exhibits sub-linear scaling with sample size, provides highly accurate haplotypes and allows integrating external phasing information such as large reference panels of haplotypes, collections of pre-phased variants and long sequencing reads. We provide SHAPET4 in an open source format on https://odelaneau.github.io/shapeit4/ and demonstrate its performance in terms of accuracy and running times on two gold standard datasets: the UK Biobank data and the Genome In A Bottle.


September 21, 2019  |  

Complete genome sequence of the type strain of Macrococcus canis.

The first complete genome sequence of the recently describedMacrococcus canisspecies has been determined for the strain KM45013T(=DSM 101690T= CCOS 969T= CCUG 68920T= CCM 8748T). The strain was isolated from a dog with rhinitis and contains a putative ?-hemolysin and amecB-carrying staphylococcal cassette chromosomemecelement (SCCmecKM45013). Copyright © 2018 Gobeli Brawand et al.


September 21, 2019  |  

Mistranslation drives the evolution of robustness in TEM-1 ß-lactamase.

How biological systems such as proteins achieve robustness to ubiquitous perturbations is a fundamental biological question. Such perturbations include errors that introduce phenotypic mutations into nascent proteins during the translation of mRNA. These errors are remarkably frequent. They are also costly, because they reduce protein stability and help create toxic misfolded proteins. Adaptive evolution might reduce these costs of protein mistranslation by two principal mechanisms. The first increases the accuracy of translation via synonymous “high fidelity” codons at especially sensitive sites. The second increases the robustness of proteins to phenotypic errors via amino acids that increase protein stability. To study how these mechanisms are exploited by populations evolving in the laboratory, we evolved the antibiotic resistance gene TEM-1 in Escherichia coli hosts with either normal or high rates of mistranslation. We analyzed TEM-1 populations that evolved under relaxed and stringent selection for antibiotic resistance by single molecule real-time sequencing. Under relaxed selection, mistranslating populations reduce mistranslation costs by reducing TEM-1 expression. Under stringent selection, they efficiently purge destabilizing amino acid changes. More importantly, they accumulate stabilizing amino acid changes rather than synonymous changes that increase translational accuracy. In the large populations we study, and on short evolutionary timescales, the path of least resistance in TEM-1 evolution consists of reducing the consequences of translation errors rather than the errors themselves.


September 21, 2019  |  

Whole genome sequence of the soybean aphid, Aphis glycines.

Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only three aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, the Russian wheat aphid, Diuraphis noxia, and the green peach aphid, Myzus persicae. We present the whole genome sequence of a fourth aphid, the soybean aphid (Aphis glycines), which is an extreme specialist and an important invasive pest of soybean (Glycine max). The availability of genomic resources is important to establish effective and sustainable pest control, as well as to expand our understanding of aphid evolution. We generated a 302.9 Mbp draft genome assembly for Ap. glycines using a hybrid sequencing approach. This assembly shows high completeness with 19,182 predicted genes, 92% of known Ap. glycines transcripts mapping to contigs, and substantial continuity with a scaffold N50 of 174,505 bp. The assembly represents 95.5% of the predicted genome size of 317.1 Mbp based on flow cytometry. Ap. glycines contains the smallest known aphid genome to date, based on updated genome sizes for 19 aphid species. The repetitive DNA content of the Ap. glycines genome assembly (81.6 Mbp or 26.94% of the 302.9 Mbp assembly) shows a reduction in the number of classified transposable elements compared to Ac. pisum, and likely contributes to the small estimated genome size. We include comparative analyses of gene families related to host-specificity (cytochrome P450’s and effectors), which may be important in Ap. glycines evolution. This Ap. glycines draft genome sequence will provide a resource for the study of aphid genome evolution, their interaction with host plants, and candidate genes for novel insect control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.


September 21, 2019  |  

The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea.

Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.© 2018, Deeg et al.


September 21, 2019  |  

Chromulinavorax destructans, a pathogenic TM6 bacterium with an unusual replication strategy targeting protist mitochondrion

Most of the diversity of microbial life is not available in culture, and as such we lack even a fundamental understanding of the biological diversity of several branches on the tree of life. One branch that is highly underrepresented is the candidate phylum TM6, also known as the Dependentiae. Their biology is known only from reduced genomes recovered from metagenomes around the world and two isolates infecting amoebae, all suggest that they live highly host-associated lifestyles as parasites or symbionts. Chromulinavorax destructans is an isolate from the TM6/Dependentiae that infects and lyses the abundant heterotrophic flagellate, Spumella elongata. Chromulinavorax destructans is characterized by a high degree of reduction and specialization for infection, so much so it was discovered in a screen for giant viruses. Its 1.2 Mb genome shows no metabolic potential and C. destructans instead relies on extensive transporter system to import nutrients, and even energy in the form of ATP from the host. Accordingly, it replicates in a viral-like fashion, while extensively reorganizing and expanding the host mitochondrion. 44% of proteins contain signal sequences for secretion, which includes many proteins of unknown function as well as 98 copies of ankyrin-repeat domain proteins, known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus.


September 21, 2019  |  

From the inside out: An epibiotic Bdellovibrio predator with an expanded genomic complement

Bdellovibrio and like organisms are abundant environmental predators of prokaryotes that show a diversity of predation strategies, ranging from intra-periplasmic to epibiotic predation. The novel epibiotic predator Bdellovibrio qaytius was isolated from a eutrophic freshwater pond in British Columbia, where it was a continual part of the microbial community. Bdellovibrio qaytius was found to preferentially prey on the beta-proteobacterium Paraburkholderia fungorum. Despite its epibiotic replication strategy, B. qaytius encodes a complex genomic complement more similar to periplasmic predators as well as several biosynthesis pathways not previously found in epibiotic predators. Bdellovibrio qaytius is representative of a widely distributed basal cluster within the genus Bdellovibrio, suggesting that epibiotic predation might be a common predation type in nature and ancestral to the genus.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.