Menu
June 1, 2021  |  

How to Compare and Cluster Every Known Genome in about an Hour

Given a massive collection of sequences, it is infeasible to perform pairwise alignment for basic tasks like sequence clustering and search. To address this problem, we demonstrate that the MinHash technique, first applied to clustering web pages, can be applied to biological sequences with similar effect, and extend this idea to include biologically relevant distance and significance measures. Our new tool, Mash, uses MinHash locality-sensitive hashing to reduce large sequences to a representative sketch and rapidly estimate pairwise distances between genomes or metagenomes. Using Mash, we explored several use cases, including a 5,000-fold size reduction and clustering of all 55,000 NCBI RefSeq genomes in 46 CPU hours. The resulting 93 MB sketch database includes all RefSeq genomes, effectively delineates known species boundaries, reconstructs approximate phylogenies, and can be searched in seconds using assembled genomes or raw sequencing runs from Illumina, Pacific Biosciences, and Oxford Nanopore. For metagenomics, Mash scales to thousands of samples and can replicate Human Microbiome Project and Global Ocean Survey results in a fraction of the time. Other potential applications include any problem where an approximate, global sequence distance is acceptable, e.g. to triage and cluster sequence data, assign species labels to unknown genomes, quickly identify mis- tracked samples, and search massive genomic databases. In addition, the Mash distance metric is based on simple set intersections, which are compatible with homomorphic encryption schemes. To facilitate integration with other software, Mash is implemented as a lightweight C++ toolkit and freely released under a BSD license athttps://github.com/marbl/mash


June 1, 2021  |  

Multiplexing strategies for microbial whole genome sequencing using the Sequel System

For microbial sequencing on the PacBio Sequel System, the current yield per SMRT Cell is in excess relative to project requirements. Multiplexing offers a viable solution; greatly increasing throughput, efficiency, and reducing costs per genome. This approach is achieved by incorporating a unique barcode for each microbial sample into the SMRTbell adapters and using a streamlined library preparation process. To demonstrate performance,12 unique barcodes assigned to B. subtilis and sequenced on a single SMRT Cell. To further demonstrate the applicability of this method, we multiplexed the genomes of 16 strains of H. pylori. Each DNA was sheared to 10 kb, end-repaired and ligated with a barcoded adapter in a single-tube reaction. The barcoded samples were pooled in equimolar quantities and a single SMRTbell library was prepared. Successful de novo microbial assemblies were achieved from all multiplexes tested (12-, and 16-plex) using data generated from a single SMRTbell library, run on a single SMRT Cell 1M with the PacBio Sequel System, and analyzed with standard SMRT Analysis assembly methods. Here, we describe a protocol that facilitated the multiplexing up to 12-plex of microbial genomes in one SMRT Cell 1M on the Sequel System that produced near-complete microbial de novo assemblies of <10 contigs for genomes <5 Mb in size.


June 1, 2021  |  

Improving long-read assembly of microbial genomes and plasmids

Complete, high-quality microbial genomes are very valuable across a broad array of fields, from environmental studies, to human microbiome health, food pathogen surveillance, etc. Long-read sequencing enables accurate resolution of complex microbial genomes and is becoming the new standard. Here we report our novel Microbial Assembly pipeline to facilitate rapid, large-scale analysis of microbial genomes. We sequenced a 48-plex library with one SMRT Cell 8M on the Sequel II System, demultiplexed, then analyzed the data with Microbial Assembly.


February 5, 2021  |  

Movie: The new biology part II – cancer

Part II of The New Biology documentary. This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain…


February 5, 2021  |  

Movie: The new biology

This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life…


April 21, 2020  |  

Characterization of Reference Materials for Genetic Testing of CYP2D6 Alleles: A GeT-RM Collaborative Project.

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination Program studies and 42 additional samples that had not been characterized previously. DNA samples were distributed to volunteer testing laboratories for genotyping using a variety of commercially available and laboratory-developed tests. These publicly available samples will support the quality-assurance and quality-control programs of clinical laboratories performing CYP2D6 testing.Published by Elsevier Inc.


April 21, 2020  |  

Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings.

To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic classes. Four other plasmids containing 12 different resistance genes, including blaCTX-M-15 and strA/B, were introduced over time, providing additional resistance to aztreonam and streptomycin. Moreover, chromosomal integration of insertion sequence Ecp1-blaCTX-M-15 mediated the inactivation of mgrB responsible for colistin resistance in four isolates from cluster III. To the best of our knowledge, this is the first description of K. pneumoniae ST14 resistant to both carbapenem and colistin in South Korea. Furthermore, although some acquired genes were lost over time, the retention of 12 resistance genes and inactivation of mgrB provided resistance to 13 classes of antibiotics.We describe stepwise changes in OXA-232-producing K. pneumoniae ST14 in vivo over time in terms of antimicrobial resistance. Our findings contribute to our understanding of the evolution of emerging high-risk K. pneumoniae clones and provide reference data for future outbreaks.Copyright © 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Potent LpxC Inhibitors with In Vitro Activity Against Multi-Drug Resistant Pseudomonas aeruginosa.

New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of Lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in Phase 1 clinical trials. In addition, we describe the profile of three additional LpxC inhibitors that were identified as potential lead molecules. These efforts did not produce an additional development candidate with a sufficiently large therapeutic window and the program was subsequently terminated.Copyright © 2019 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.