Given a massive collection of sequences, it is infeasible to perform pairwise alignment for basic tasks like sequence clustering and search. To address this problem, we demonstrate that the MinHash technique, first applied to clustering web pages, can be applied to biological sequences with similar effect, and extend this idea to include biologically relevant distance and significance measures. Our new tool, Mash, uses MinHash locality-sensitive hashing to reduce large sequences to a representative sketch and rapidly estimate pairwise distances between genomes or metagenomes. Using Mash, we explored several use cases, including a 5,000-fold size reduction and clustering of all 55,000…
For microbial sequencing on the PacBio Sequel System, the current yield per SMRT Cell is in excess relative to project requirements. Multiplexing offers a viable solution; greatly increasing throughput, efficiency, and reducing costs per genome. This approach is achieved by incorporating a unique barcode for each microbial sample into the SMRTbell adapters and using a streamlined library preparation process. To demonstrate performance,12 unique barcodes assigned to B. subtilis and sequenced on a single SMRT Cell. To further demonstrate the applicability of this method, we multiplexed the genomes of 16 strains of H. pylori. Each DNA was sheared to 10 kb,…
Complete, high-quality microbial genomes are very valuable across a broad array of fields, from environmental studies, to human microbiome health, food pathogen surveillance, etc. Long-read sequencing enables accurate resolution of complex microbial genomes and is becoming the new standard. Here we report our novel Microbial Assembly pipeline to facilitate rapid, large-scale analysis of microbial genomes. We sequenced a 48-plex library with one SMRT Cell 8M on the Sequel II System, demultiplexed, then analyzed the data with Microbial Assembly.
This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life itself. The potential impact for humanity is immense: from fighting complex diseases such as cancer, enabling proactive surveillance of virulent pathogens, and increasing food crop production.
Part II of The New Biology documentary. This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life itself. The potential impact for humanity is immense: from fighting complex diseases such as cancer, enabling proactive surveillance of virulent pathogens, and increasing food crop production.
Part IV of The New Biology documentary. This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life itself. The potential impact for humanity is immense: from fighting complex diseases such as cancer, enabling proactive surveillance of virulent pathogens, and increasing food crop production.
Part I of The New Biology documentary. This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life itself. The potential impact for humanity is immense: from fighting complex diseases such as cancer, enabling proactive surveillance of virulent pathogens, and increasing food crop production.
Part III of The New Biology documentary. This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life itself. The potential impact for humanity is immense: from fighting complex diseases such as cancer, enabling proactive surveillance of virulent pathogens, and increasing food crop production.
Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.
In this webinar, Ben Auch, Research Scientist, Innovation Lab, University of Minnesota Genomics Center, Cody Sheik, Assistant Professor of Biology, University of Minnesota Duluth, and Harm van Bakel, Assistant Professor of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai provide details of the newly updated microbial whole genome sequencing pipeline, which leverages the multiplexing capabilities of the Sequel System, share new insights into the ecophysiology of Minnesota microbes using long-read sequencing, and show of how whole genome sequencing is used in pathogen surveillance programs at hospitals.
In this Labroots webinar, Meredith Ashby, Director of Microbial Genomics at PacBio, describes the utility of highly accurate long-read sequencing, known as HiFi sequencing, to understand the SARs-CoV-2 viral genome. HiFi sequencing enables mutation phasing and rare variant detection to understand viral stability and mutation rates, as well as providing insights into viral population structure for monitoring viral evolution. Ashby also shares how HiFi sequencing can be used to explore the host immune response to COVID-19, specifically by providing full-length sequencing of the B cell repertoire, IGH locus and HLA genes. Access additional COVID-19 Sequencing Tools and Resources at at…
Complete, high-quality microbial genomes are very valuable across a broad array of fields, from environmental studies, to human microbiome health, food pathogen surveillance, etc. Long-read sequencing enables accurate resolution of complex microbial genomes and is becoming the new standard. Here we report our novel Microbial Assembly pipeline to facilitate rapid, large-scale analysis of microbial genomes. We sequenced a 48-plex library with one SMRT Cell 8M on the Sequel II System, demultiplexed, then analyzed the data with Microbial Assembly.
Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination…
To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic…
New drugs with novel mechanisms of resistance are desperately needed to address both community and nosocomial infections due to Gram-negative bacteria. One such potential target is LpxC, an essential enzyme that catalyzes the first committed step of Lipid A biosynthesis. Achaogen conducted an extensive research campaign to discover novel LpxC inhibitors with activity against Pseudomonas aeruginosa We report here the in vitro antibacterial activity and pharmacodynamics of ACHN-975, the only molecule from these efforts and the first ever LpxC inhibitor to be evaluated in Phase 1 clinical trials. In addition, we describe the profile of three additional LpxC inhibitors that…