Menu
July 7, 2019  |  

Complete genomic analysis of multidrug-resistance Pseudomonas aeruginosa Guangzhou-Pae617, the host of megaplasmid pBM413.

We previously described the novel qnrVC6 and blaIMP-45carrying megaplasmid pBM413. This study aimed to investigate the complete genome of multidrug-resistance P. aeruginosa Guangzhou-Pae617, a clinical isolate from the sputum of a patient who was suffering from respiratory disease in Guangzhou, China.The genome was sequenced using Illumina Hiseq 2500 and PacBio RS II sequencers and assembled de novo using HGAP. The genome was automatically and manually annotated.The genome of P. aeruginosa Guangzhou-Pae617 is 6,430,493 bp containing 5881 predicted genes with an average G + C content of 66.43%. The genome showed high similarity to two new sequenced P. aeruginosa strains isolated from New York, USA. From the whole genome sequence, we identified a type IV pilin, two large prophages, 15 antibiotic resistant genes, 5 genes involved in the “Infectious diseases” pathways, and 335 virulence factors.The antibiotic resistance and virulence factors in the genome of P. aeruginosa strain Guangzhou-Pae617 were identified by complete genomic analysis. It contributes to further study on antibiotic resistance mechanism and clinical control of P. aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Planococcus faecalis AJ003T, the type species of the genus Planococcus and a microbial C30 carotenoid producer.

A novel type strain, Planococcus faecalis AJ003T, isolated from the feces of Antarctic penguins, synthesizes a rare C30 carotenoid, glycosyl-4,4′-diaponeurosporen-4′-ol-4-oic acid. The complete genome of P. faecalis AJ003Tcomprises a single circular chromosome (3,495,892?bp; 40.9% G?+?C content). Annotation analysis has revealed 3511 coding DNA sequences and 99 RNAs; seven genes associated with the MEP pathway and five genes involved in the carotenoid pathway have been identified. The functionality and complementation of 4,4′-diapophytoene synthase (CrtM) and two copies of heterologous 4,4′-diapophytoene desaturase (CrtN) involved in carotenoid biosynthesis were analyzed in Escherichia coli. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome sequence of Galleria mellonella(greater wax moth).

The larvae of the greater wax moth,Galleria mellonella, are pests of active beehives. In infection biology, these larvae are playing a more and more attractive role as an invertebrate host model. Here, we report on the first genome sequence ofGalleria mellonella. Copyright © 2018 Lange et al.


July 7, 2019  |  

The odyssey of the ancestral Escherich strain through culture collections: an example of allopatric diversification.

More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding generpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations inrpoSand efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution ofE. coliof Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.


July 7, 2019  |  

The ‘gifted’ actinomycete Streptomyces leeuwenhoekii.

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.


July 7, 2019  |  

Whole genome sequence and phenotypic characterization of a Cbm+ serotype e strain of Streptococcus mutans.

We report the whole genome sequence of the serotype e Cbm+ strain LAR01 of Streptococcus mutans, a dental pathogen frequently associated with extra-oral infections. The LAR01 genome is a single circular chromosome of 2.1 Mb with a GC content of 36.96%. The genome contains 15 phosphotransferase system gene clusters, seven cell wall-anchored (LPxTG) proteins, all genes required for the development of natural competence and genes coding for mutacins VI and K8. Interestingly, the cbm gene is genetically linked to a putative type VII secretion system that has been found in Mycobacteria and few other Gram-positive bacteria. When compared with the UA159 type strain, phenotypic characterization of LAR01 revealed increased biofilm formation in the presence of either glucose or sucrose but similar abilities to withstand acid and oxidative stresses. LAR01 was unable to inhibit the growth of Strpetococcus gordonii, which is consistent with the genomic data that indicate absence of mutacins that can kill mitis streptococci. On the other hand, LAR01 effectively inhibited growth of other S. mutans strains, suggesting that it may be specialized to outcompete strains from its own species. In vitro and in vivo studies using mutational and heterologous expression approaches revealed that Cbm is a virulence factor of S. mutans by mediating binding to extracellular matrix proteins and intracellular invasion. Collectively, the whole genome sequence analysis and phenotypic characterization of LAR01 provides new insights on the virulence properties of S. mutans and grants further opportunities to understand the genomic fluidity of this important human pathogen.© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


July 7, 2019  |  

Complete genome sequence of Staphylococcus haemolyticus type strain SGAir0252.

Staphylococcus haemolyticus is a coagulase-negative staphylococcal species that is part of the skin microbiome and an opportunistic human pathogen. The strain SGAir0252 was isolated from tropical air samples collected in Singapore, and its complete genome comprises one chromosome of 2.63?Mb and one plasmid of 41.6?kb. Copyright © 2018 Premkrishnan et al.


July 7, 2019  |  

Draft genome sequence of lytic bacteriophage SA7 infecting Staphylococcus aureus isolates

Staphylococcus aureus is a Gram-positive and a round-shaped bacterium of Firmicutes phylum, and is a common cause of skin infections, respiratory infections, and food poisoning. Bacteriophages infecting S. aureus can be an effective treatment for S. aureus infections. Here, the draft genomic sequence is announced for a lytic bacteriophage SA7 infecting S. aureus isolates. The bacteriophage SA7 was isolated from a sewage water sample near a livestock farm in Chungcheongnam-do, South Korea. SA7 has a genome of 34,730 bp and 34.1% G + C content. The genome has 53 protein-coding genes, 23 of which have predicted functions from BLASTp analysis, leaving the others conserved proteins with unknown function.


July 7, 2019  |  

Probiotic genomes: Sequencing and annotation in the past decade

Probiotics are live microorganisms that confer many health benefits to the host when administered in adequate quantities. These health benefits have garnered much attention towards Probiotics and have given an impetus to their use as dietary supplements for the improvement of general health and as adjuvant therapies for certain diseases. The increased demand for probiotic products in the recent times has provided the thrust for probiotic research applied to several areas of human biology. The advances in genomic technologies have further facilitated the sequencing of the genomes of such probiotic bacteria and their genomic analyses to identify the genes that endow the beneficial effects they are known to exert. This work reviews the application of genomic strategies on probiotic bacteria, while providing the details about the probiotic strains whose genome sequences are available. It also consolidates the Genomic tools used for the sequencing, assembly and annotation of the probiotic genes and how it has helped in comparative genomic analyses.


July 7, 2019  |  

Complete genome sequence of Bacillus licheniformis BL-010.

The biodegradation of Aflatoxin B1 (AFB1) is an industry of increasing importance. Bacillus licheniformis BL-010 was isolated from the aflatoxin contaminated corn feed storage, and was shown to degrade AFB1 efficiently. Here we present the complete genome sequence of BL-010, the genome comprises 4,287,714 bp in a circular chromosome with a GC content of 46.12% and contains genes encoding AFB1 degrading enzymes. The genome sequence displayed that this strain contains genes involved in production of laccase, aromatic ring-opening dioxygenase which could detoxify AFB1. Complete genome sequence of the strain BL-010 can further provide the genomic basis for the biotechnological application of strain BL-010 as an effective way to degrade AFB1. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics.

Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.


July 7, 2019  |  

Isolation and identification of an anthracimycin analogue from Nocardiopsis kunsanensis, a halophile from a saltern, by genomic mining strategy.

Modern medicine is unthinkable without antibiotics; yet, growing issues with microbial drug resistance require intensified search for new active compounds. Natural products generated by Actinobacteria have been a rich source of candidate antibiotics, for example anthracimycin that, so far, is only known to be produced by Streptomyces species. Based on sequence similarity with the respective biosynthetic cluster, we sifted through available microbial genome data with the goal to find alternative anthracimycin-producing organisms. In this work, we report about the prediction and experimental verification of the production of anthracimycin derivatives by Nocardiopsis kunsanensis, a non-Streptomyces actinobacterial microorganism. We discovered N. kunsanensis to predominantly produce a new anthracimycin derivative with methyl group at C-8 and none at C-2, labeled anthracimycin BII-2619, besides a minor amount of anthracimycin. It displays activity against Gram-positive bacteria with similar low level of mammalian cytotoxicity as that of anthracimycin.


July 7, 2019  |  

Auroramycin, a potent antibiotic from Streptomyces roseosporus by CRISPR-Cas9 activation.

Silent biosynthetic gene clusters represent a potentially rich source for new bioactive compounds. We report the discovery, characterization and biosynthesis of a novel doubly glycosylated 24-membered polyene macrolactam from a silent biosynthetic gene cluster in Streptomyces roseosporus using the CRISPR-Cas9 gene cluster activation strategy. Structural characterization of this polyketide, named auroramycin, revealed a rare isobutyrylmalonyl extender unit and a unique pair of aminosugars. Relative and absolute stereochemistry were determined using a combination of spectroscopic analyses, chemical derivatization, and computational analysis. The activated gene cluster for auroramycin production was also verified by transcriptional analyses and gene deletions. Finally, auroramycin exhibited potent anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity towards clinical drug-resistant isolates.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

First description of novel arginine catabolic mobile elements (ACMEs) types IV and V harboring a kdp operon in Staphylococcus epidermidis characterized by whole genome sequencing.

The arginine catabolic mobile element (ACME) was first described in the methicillin-resistant Staphylococcus aureus strain USA300 and is thought to facilitate survival on skin. To date three distinct ACME types have been characterized comprehensively in S. aureus and/or Staphylococcus epidermidis. Type I harbors the arc and opp3 operons encoding an arginine deaminase pathway and an oligopeptide permease ABC transporter, respectively, type II harbors the arc operon only, and type III harbors the opp3 operon only. To investigate the diversity and detailed genetic organization of ACME, whole genome sequencing (WGS) was performed on 32 ACME-harboring oro-nasal S. epidermidis isolates using MiSeq- and PacBio-based WGS platforms. In nine isolates the ACMEs lacked the opp3 operon, but harbored a complete kdp operon (kdpE/D/A/B/C) located a maximum of 2.8?kb upstream of the arc operon. The kdp operon exhibited 63% DNA sequence identity to the native S. aureus kdp operon. These findings identified a novel, previously undescribed ACME type (designated ACME IV), which could be subtyped (IVa and IVb) based on distinct 5′ flanking direct repeat sequences (DRs). Multilocus sequence typing (MLST) sequences extracted from the WGS data identified the sequence types (STs) of the isolates investigated. Four of the nine ACME IV isolates belonged to ST153, and one to ST17, a single locus variant of ST153. A tenth isolate, identified as ST5, harbored another novel ACME type (designated ACME V) containing the kdp, arc and opp3 operons and flanked by DR_F, and DR_B but lacked any internal DRs. ACME V was colocated with a staphylococcal chromosome cassette mec (SCCmec) IV element and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in a 116.9?kb composite island. The extensive genetic diversity of ACME in S. epidermidis has been further elucidated by WGS, revealing two novel ACME types IV and V for the first time. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.