X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 27, 2020

Epigenetics Application Brochure: Characterize the epigenetic landscape of your genome

Single Molecule, Real-Time (SMRT) Sequencing directly detects DNA modifications by measuring variation in the polymerase kinetics of DNA base incorporation during sequencing. With high throughput, long reads, and the sensitivity to detect epigenetic modification without amplification or chemical conversions, the PacBio Systems offer scalable solutions for assessing DNA modifications in bacterial and eukaryotic genomes.

Read More »

Tuesday, April 21, 2020

DNA Methylation at the Schizophrenia and Intelligence GWAS-Implicated MIR137HG Locus May Be Associated with Disease and Cognitive Functions

The largest genome-wide association studies have identified schizophrenia and intelligence associated variants in the MIR137HG locus containing genes encoding microRNA-137 and microRNA-2682. In the present study, we investigated DNA methylation in the MIR137HG intragenic CpG island (CGI) in the peripheral blood of 44 patients with schizophrenia and 50 healthy controls. The CGI included the entire MIR137 gene and the region adjacent to the 5′-end of MIR2682. The aim of the study was to examine the relationship of the CGI methylation with schizophrenia and cognitive functioning. The methylation level of 91 CpG located in the selected region was established for each…

Read More »

Monday, March 30, 2020

ASHG PacBio Workshop: Amplicon SMRT Sequencing applications in human genetics

In this ASHG workshop presentation, Stuart Scott of the Icahn School of Medicine at Mount Sinai, presented on using the PacBio system for amplicon sequencing in pharmacogenomics and clinical genomics workflows. Accurate, phased amplicon sequence for the CYP2D6 gene, for example, has allowed his team to reclassify up to 20% of samples, providing data that’s critical for drug metabolism and dosing. In clinical genomics, Scott presented several case studies illustrating the utility of highly accurate, long-read sequencing for assessing copy number variants and for confirming a suspected medical diagnosis in rare disease patients. He noted that the latest Sequel System…

Read More »

Sunday, September 22, 2019

Methylation of the reelin gene promoter in peripheral blood and its relationship with the cognitive function of schizophrenia patients.

There is a decrease in the expression of the reelin gene (RELN) in the brain of schizophrenia patients, which can underlie observed cognitive abnormalities. It is suggested that this decrease is caused by the hypermethylation of the RELN promoter. The aim of the study was to investigate methylation of the RELN promoter in the peripheral blood of schizophrenia patients and its association with their cognitive deficits. A modified SMRT-BS (single-molecule real-time bisulfite sequencing) was used. We determined the methylation rate of 170 CpG sites within a 1465 bp DNA region containing the entire CpG island in the RELN promoter in…

Read More »

Sunday, September 22, 2019

Relationship between Alzheimer’s disease-associated SNPs within the CLU gene, local DNA methylation and episodic verbal memory in healthy and schizophrenia subjects.

Genetic variation may impact on local DNA methylation patterns. Therefore, information about allele-specific DNA methylation (ASM) within disease-related loci has been proposed to be useful for the interpretation of GWAS results. To explore mechanisms that may underlie associations between Alzheimer’s disease (AD) and schizophrenia risk CLU gene and verbal memory, one of the most affected cognitive domains in both conditions, we studied DNA methylation in a region between AD-associated SNPs rs9331888 and rs9331896 in 72 healthy individuals and 73 schizophrenia patients. Using single-molecule real-time bisulfite sequencing we assessed the haplotype-dependent ASM in this region. We then investigated whether its methylation…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »