Menu
September 22, 2019  |  

Whole-genome-sequencing characterization of bloodstream infection-causing hypervirulent Klebsiella pneumoniae of capsular serotype K2 and ST374.

Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 102 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance.


September 22, 2019  |  

Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots.

A gram-negative bacterium GXGL-4A was originally isolated from maize roots. It displayed nitrogen-fixing (NF) ability under nitrogen-free culture condition, and had a significant promotion effect on cucumber growth in the pot inoculation test. The preliminary physiological and biochemical traits of GXGL-4A were characterized. Furthermore, a phylogenetic tree was constructed based on 16S ribosomal DNA (rDNA) sequences of genetically related species. To determine the taxonomic status of GXGL-4A and further utilize its nitrogen-fixing potential, genome sequence was obtained using PacBio RS II technology. The analyses of average nucleotide identity based on BLAST+ (ANIb) and correlation indexes of tetra-nucleotide signatures (Tetra) showed that the NF isolate GXGL-4A is closely related to the Kosakonia radicincitans type strain DSM 16656. Therefore, the isolate GXGL-4A was eventually classified into the species of Kosakonia radicincitans and designated K. radicincitans GXGL-4A. A high consistency in composition and gene arrangement of nitrogen-fixing gene cluster I (nif cluster I) was found between K. radicincitans GXGL-4A and other Kosakonia NF strains. The mutants tagged with green fluorescence protein (GFP) were obtained by transposon Tn5 mutagenesis, and then, the colonization of gfp-marked K. radicincitans GXGL-4A cells on cucumber seedling root were observed under fluorescence microscopy. The preferential sites of the labeled GXGL-4A cell population were the lateral root junctions, the differentiation zone, and the elongation zone. All these results should benefit for the deep exploration of nitrogen fixation mechanism of K. radicincitans GXGL-4A and will definitely facilitate the genetic modification process of this NF bacterium in sustainable agriculture.


July 19, 2019  |  

A comparative study on the characterization of hepatitis B virus quasispecies by clone-based sequencing and third-generation sequencing.

Hepatitis B virus (HBV) has a high mutation rate due to the extremely high replication rate and the proofreading deficiency during reverse transcription. The generated variants with genetic heterogeneity are described as viral quasispecies (QS). Clone-based sequencing (CBS) is thought to be the ‘gold standard’ for assessing QS complexity and diversity of HBV, but an important issue about CBS is cost-effectiveness and laborious. In this study, we investigated the utility of the third-generation sequencing (TGS) DNA sequencing to characterize genetic heterogeneity of HBV QS and assessed the possible contribution of TGS technology in HBV QS studies. Parallel experiments including 3 control samples, which consisted of HBV full gene genotype B and genotype C plasmids, and 10 patients samples were performed by using CBS and TGS to analyze HBV whole-genome QS. Characterization of QS heterogeneity was conducted by using comprehensive statistical analysis. The results showed that TGS had a high consistency with CBS when measuring the complexity and diversity of QS. In addition, to detect rare variants, there were strong advantages conferred by TGS. In summary, TGS was considered to be practicable in HBV QS studies and it might have a relevant role in the clinical management of HBV infection in the future.


July 7, 2019  |  

Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study.

Polymyxin antibiotics are used as last-resort therapies to treat infections caused by multidrug-resistant Gram-negative bacteria. The plasmid-mediated colistin resistance determinant MCR-1 has been identified in Enterobacteriaceae in China. We did this study to investigate the prevalence of the mcr-1 gene in clinical isolates from patients with bloodstream infections in China.Clinical isolates of Escherichia coli and Klebsiella pneumoniae were collected from patients with bloodstream infections at 28 hospitals in China, then screened for colistin resistance by broth microdilution and for the presence of the mcr-1 gene by PCR amplification. We subjected mcr-1-positive isolates to genotyping, susceptibility testing, and clinical data analysis. We established the genetic location of mcr-1 with Southern blot hybridisation, and we analysed plasmids containing mcr-1 with filter mating, electroporation, and DNA sequencing.2066 isolates, consisting of 1495 E coli isolates and 571 K pneumoniae isolates were collected. Of the 1495 E coli isolates, 20 (1%) were mcr-1-positive, whereas we detected only one (<1%) mcr-1-positive isolate among the 571 K pneumoniae isolates. All mcr-1-positive E coli and K pneumoniae isolates were resistant to colistin, with minimum inhibitory concentrations values in the range of 4-32 mg/L, except for one E coli isolate that had a minimum inhibitory concentration less than or equal to 0·06 mg/L. All 21 mcr-1-positive isolates were susceptible to tigecycline and 20 isolates (95%) were susceptible to the carbapenem and ß-lactamase inhibitor combination piperacillin and tazobactam. One mcr-1-positive E coli isolate also produced NDM-5, which confers resistance to beta-lactam antibiotics. The 21 mcr-1-positive isolates were clonally diverse and carried mcr-1 on two types of plasmids, a 33 kb IncX4 plasmid and a 61 kb Inc12 plasmid. The 30 day mortality of the patients with bloodstream infections caused by mcr-1-positive isolates was zero.mcr-1-positive isolates from bloodstream infections were rare, sporadic, and remained susceptible to many antimicrobial agents. E coli, rather than K pneumoniae, was the main host of the mcr-1 gene. Further studies are needed to clarify the clinical impact of this novel resistance gene.National Natural Science Foundation of China. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Coexistence of blaOXA-48 and truncated blaNDM-1 on different plasmids in a Klebsiella pneumoniae isolate in China.

Objectives: To describe the genetic environment, transferability, and antibiotic susceptibility of one clinical Klebsiella pneumoniae isolate harboring both blaOXA-48 and blaNDM-1 on different plasmids from a Chinese hospital. Methods: The isolate was subjected to antimicrobial susceptibility testing and multilocus sequence typing using Etest and PCR. The plasmids harboring blaOXA-48 and blaNDM-1 were analyzed through conjugation experiments, S1-nuclease pulsed-field gel electrophoresis, and hybridization with specific probes. Plasmid DNA was sequenced using Pacbio RS II and annotated using RAST. Results:K. pneumoniae RJ119, carrying both blaOXA-48 and blaNDM-1, was resistant to almost all carbapenems, cephalosporins, fluoroquinolone, and aminoglycosides and belonged to ST307. blaOXA-48 was located on a 61,748-bp IncL/M conjugative plasmid, which displayed overall nucleotide identity (99%) to pKPN-E1-Nr.7. blaNDM-1 was located on a 335,317-bp conjugative plasmid, which was a fusion of a blaNDM-1-harboring InA/C plasmid pNDM-US (140,825 bp, 99% identity) and an IncFIB plasmid pKPN-c22 (178,563 bp, 99% identity). The transconjugant RJ119-1 harboring blaNDM-1 was susceptible to carbapenem, and there was an insertion of IS10 into the blaNDM-1 gene. Conclusion: This is the first report of the coexistence of blaOXA-48 and blaNDM-1 in one K. pneumoniae clinical isolate in China. OXA-48 in RJ119 contributed to the majority to its high resistance to carbapenems, whereas NDM-1 remained unexpressed, most likely due to the insertion of IS10. Our results provide new insight for the relationship between genetic diagnosis and clinical treatment. They also indicate that increased surveillance of blaOXA-48 is urgently needed in China.


July 7, 2019  |  

Complete genome sequence of Lysinibacillus sphaericus LMG 22257, a strain with ureolytic activity inducing calcium carbonate precipitation.

Microbiologically induced calcium carbonate precipitation shows the potential for use in bioremediation and construction consolidation, but the efficiency of this process must be improved. Lysinibacillus sphaericus LMG 22257 is a gram-positive ureolytic strain that has recently been applied for consolidating construction by mediating calcium carbonate precipitation. The complete genome sequence of L. sphaericus LMG 22257 is 3,436,578 base pairs with a GC content of 38.99%. The urea degradation pathway and genes related to extracellular polymeric substance biosynthesis were also identified. The strain can tolerate high alkalinity (pH up to 10) and high urea concentration (up to 3M). These findings provide insights into the microbiologically induced carbonate precipitation and extend the application of the metabolic potential of L. sphaericus LMG 22257 for bioremediation. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

ICESag37, a novel integrative and conjugative element carrying antimicrobial resistance genes and potential virulence factors in Streptococcus agalactiae.

ICESag37, a novel integrative and conjugative element carrying multidrug resistance and potential virulence factors, was characterized in a clinical isolate of Streptococcus agalactiae. Two clinical strains of S. agalactiae, Sag37 and Sag158, were isolated from blood samples of new-borns with bacteremia. Sag37 was highly resistant to erythromycin and tetracycline, and susceptible to levofloxacin and penicillin, while Sag158 was resistant to tetracycline and levofloxacin, and susceptible to erythromycin. Transfer experiments were performed and selection was carried out with suitable antibiotic concentrations. Through mating experiments, the erythromycin resistance gene was found to be transferable from Sag37 to Sag158. SmaI-PFGE revealed a new SmaI fragment, confirming the transfer of the fragment containing the erythromycin resistance gene. Whole genome sequencing and sequence analysis revealed a mobile element, ICESag37, which was characterized using several molecular methods and in silico analyses. ICESag37 was excised to generate a covalent circular intermediate, which was transferable to S. agalactiae. Inverse PCR was performed to detect the circular form. A serine family integrase mediated its chromosomal integration into rumA, which is a known hotspot for the integration of streptococcal ICEs. The integration site was confirmed using PCR. ICESag37 carried genes for resistance to multiple antibiotics, including erythromycin [erm(B)], tetracycline [tet(O)], and aminoglycosides [aadE, aphA, and ant(6)]. Potential virulence factors, including a two-component signal transduction system (nisK/nisR), were also observed in ICESag37. S1-PFGE analysis ruled out the existence of plasmids. ICESag37 is the first ICESa2603 family-like element identified in S. agalactiae carrying both resistance and potential virulence determinants. It might act as a vehicle for the dissemination of multidrug resistance and pathogenicity among S. agalactiae.


July 7, 2019  |  

New Delhi metallo-ß-lactamase-1-producing Klebsiella pneumoniae, Florida, USA(1).

New Delhi metallo-ß-lactamase (NDM)–producing Enterobacteriaceae have swiftly spread worldwide since an initial report in 2008 from a patient who had been transferred from India back home to Sweden (1). Epidemiologically, the global diffusion of NDM-1 producers has been associated with the Indian subcontinent and the Balkan region, which are considered the primary and secondary reservoirs of these pathogens, respectively (1). However, recent reports suggest that countries in the Middle East may constitute another potential reservoir for NDM-1 producers (1). More than 100 NDM-producing isolates have been reported in the United States, most of which were associated with recent travel from the Indian subcontinent (2,3). We report an NDM-1–producing Klebsiella pneumoniae strain that was recovered from a patient who had been transferred from Iran to a hospital in Florida, United States.


July 7, 2019  |  

Genome sequence of Pseudomonas citronellolis SJTE-3, an estrogen- and polycyclic aromatic hydrocarbon-degrading bacterium.

Pseudomonas citronellolis SJTE-3, isolated from the active sludge of a wastewater treatment plant in China, can utilize a series of environmental estrogens and estrogen-like toxicants. Here, we report its whole-genome sequence, containing one circular chromosome and one circular plasmid. Genes involved in estrogen biodegradation in this bacterium were predicted. Copyright © 2016 Zheng et al.


July 7, 2019  |  

Whole-Genome and Expression Analyses of Bamboo Aquaporin Genes Reveal Their Functions Involved in Maintaining Diurnal Water Balance in Bamboo Shoots.

Water supply is essential for maintaining normal physiological function during the rapid growth of bamboo. Aquaporins (AQPs) play crucial roles in water transport for plant growth and development. Although 26 PeAQPs in bamboo have been reported, the aquaporin-led mechanism of maintaining diurnal water balance in bamboo shoots remains unclear. In this study, a total of 63 PeAQPs were identified, based on the updated genome of moso bamboo (Phyllostachys edulis), including 22 PePIPs, 20 PeTIPs, 17 PeNIPs, and 4 PeSIPs. All of the PeAQPs were differently expressed in 26 different tissues of moso bamboo, based on RNA sequencing (RNA-seq) data. The root pressure in shoots showed circadian rhythm changes, with positive values at night and negative values in the daytime. The quantitative real-time PCR (qRT-PCR) result showed that 25 PeAQPs were detected in the base part of the shoots, and most of them demonstrated diurnal rhythm changes. The expression levels of some PeAQPs were significantly correlated with the root pressure. Of the 86 sugar transport genes, 33 had positive co-expression relationships with 27 PeAQPs. Two root pressure-correlated PeAQPs, PeTIP4;1 and PeTIP4;2, were confirmed to be highly expressed in the parenchyma and epidermal cells of bamboo culm, and in the epidermis, pith, and primary xylem of bamboo roots by in situ hybridization. The authors’ findings provide new insights and a possible aquaporin-led mechanism for bamboo fast growth.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.