X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, May 13, 2020

PacBio Workshop: Understanding the biology of genomes with HiFi sequencing

The utility of new highly accurate long reads, or HiFi reads, was first demonstrated for calling all variant types in human genomes. It has since been shown that HiFi reads can be used to generate contiguous, complete, and accurate human genomes, even in repeat structures such as centromeres and telomeres. In this virtual workshop scientists from PacBio as well as Tina Graves-Lindsay from the McDonnell Genome Institute at Washington University share the many improvements we’ve made to HiFi sequencing in the past year, tools that take advantage of HiFi data for variant detection and assembly, and examples in numerous genomics…

Read More »

Monday, April 27, 2020

Case Study: Scientists create gold standard plant and animal genomes with SMRT Sequencing

From crop improvement to breeding healthier livestock to modeling human disease, scientists are using PacBio Sequencing to advance understanding of plant and animal genomes. In this article, we look at four examples of plant and animal genome references improved or made possible with SMRT Sequencing, including an early example of transcriptome sequencing of a chicken for improved annotation. These examples highlight insights gained with SMRT Sequencing that are missed with short-read data, such as complex regions or novel genes.

Read More »

Tuesday, April 21, 2020

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50?bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently…

Read More »

Tuesday, April 21, 2020

Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus.

The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the Midwestern United States, with both agricultural populations and herbicide resistance only recently emerging in Canada. To understand the evolutionary mechanisms driving the spread…

Read More »

Tuesday, April 21, 2020

Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes.

Metagenomic samples are snapshots of complex ecosystems at work. They comprise hundreds of known and unknown species, contain multiple strain variants and vary greatly within and across environments. Many microbes found in microbial communities are not easily grown in culture making their DNA sequence our only clue into their evolutionary history and biological function. Metagenomic assembly is a computational process aimed at reconstructing genes and genomes from metagenomic mixtures. Current methods have made significant strides in reconstructing DNA segments comprising operons, tandem gene arrays and syntenic blocks. Shorter, higher-throughput sequencing technologies have become the de facto standard in the field.…

Read More »

Tuesday, April 21, 2020

Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation.

We describe a method that adds long-read sequencing to a mix of technologies used to assemble a highly complex cattle rumen microbial community, and provide a comparison to short read-based methods. Long-read alignments and Hi-C linkage between contigs support the identification of 188 novel virus-host associations and the determination of phage life cycle states in the rumen microbial community. The long-read assembly also identifies 94 antimicrobial resistance genes, compared to only seven alleles in the short-read assembly. We demonstrate novel techniques that work synergistically to improve characterization of biological features in a highly complex rumen microbial community.

Read More »

Tuesday, April 21, 2020

Haplotype-aware diplotyping from noisy long reads.

Current genotyping approaches for single-nucleotide variations rely on short, accurate reads from second-generation sequencing devices. Presently, third-generation sequencing platforms are rapidly becoming more widespread, yet approaches for leveraging their long but error-prone reads for genotyping are lacking. Here, we introduce a novel statistical framework for the joint inference of haplotypes and genotypes from noisy long reads, which we term diplotyping. Our technique takes full advantage of linkage information provided by long reads. We validate hundreds of thousands of candidate variants that have not yet been included in the high-confidence reference set of the Genome-in-a-Bottle effort.

Read More »

Monday, March 30, 2020

User Group Meeting: Improved assembly of segmental duplications using HiFi

In this PacBio User Group Meeting presentation, Mitchell Vollger of the University of Washington used HiFi reads from SMRT Sequencing to study segmental duplications in the human genome. The technique significantly reduced the complexity of accurately mapping these nearly identical sequences throughout the genome; it also reduced the amount of compute power needed compared to a previous PacBio assembly using continuous long reads instead of circular consensus sequencing. Despite generating less data with the HiFi assembly, the team still resolved 30% more segmental duplications with the new approach.

Read More »

Monday, March 30, 2020

AGBT Presentation: Feed the World – Developing genomic resources for insects as food

In a push to develop insect-based food sources for people, Brenda Oppert from the USDA has been sequencing bug genomes with PacBio technology. Long reads are essential because of the highly repetitive sequences and large genomes. On the Sequel II System, a single SMRT Cell is sufficient to generate 350-fold coverage and produce a high-quality assembly for some of the insects she’s studying.

Read More »

Monday, March 30, 2020

User Group Meeting: Sequencing chemistry & application updates

To start Day 1 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on the latest releases and performance metrics for the Sequel II System. The longest reads generated on this system with the SMRT Cell 8M now go beyond 175,000 bases, while maintaining extremely high accuracy. HiFi mode, for example, uses circular consensus sequencing to achieve accuracy of Q40 or even Q50.

Read More »

Monday, March 30, 2020

PAG Conference: From sequencing to chromosomes – new de novo assembly and scaffolding methods improve the goat reference genome

Sergey Koren of the National Biodefense Analysis and Countermeasures Center (NBACC) discusses integrating the MinHash Alignment Process (MHAP) with Celera Assembler to enable reference-grade assemblies of model organisms, revealing novel heterochromatic sequences and filling low-complexity gap sequences in the GRCh38 human reference genome. Dr. Koren and his team have applied this method to assemble the San Clemente goat genome. Combining SMRT Sequencing and next-generation optical mapping from BioNano Genomics generates an assembly that is over 150-fold more contiguous than the latest Capra hircusgoat reference. In combination with Hi-C sequencing, the assembly surpasses reference assemblies de novo, with minimal manual intervention.…

Read More »

Monday, March 30, 2020

PAG Conference: Analysis of structural variants using 3rd generation sequencing

Michael Schatz of Cold Spring Harbor Laboratory and Johns Hopkins University discusses the challenges in detecting structural variations (SVs) in high throughput sequencing data, especially more complex SVs such as a duplication nested within an inversion. To overcome these challenges, Dr. Schatz and his team have been applying long-read sequencing to analyze SVs in a range of samples from small microbial genomes, through mid-sized plant and animal genomes, to large mammalian genomes. The increased read lengths, which currently average over 10kbp and some approach 100kbp, make it possible to span more complex SVs and accurately assess SVs in repetitive regions,…

Read More »

Monday, March 30, 2020

Seminar: Optimizing eukaryotic de novo genome assembly with long-read sequencing

This seminar features great hands-on information and best practices for analyzing SMRT Sequencing data for eukaryotic genome assembly. Michael Schatz provides an overview of the assembly tools, provides recommendations for when to use each one, and discusses the challenges of short-read assemblies. James Gurtowski gives an in-depth overview of hybrid assemblies methods, where short read data are used used to correct errors in longer reads. Finally, Sergey Koren presents on chromosome-scale assembly, including the MinHash Alignment Process (MHAP) he developed to dramatically reduce the computational processing power required for genome assemblies.

Read More »

Monday, March 30, 2020

AGBT Conference: A community effort using multiple technologies to produce a dramatically improved genome assembly of the Zika virus mosquito vector

At AGBT 2017, the Broad Institute’s Daniel Neafsey reported a large collaborative effort to sequence the mosquito that carries Zika virus. The team is using long-read PacBio sequencing to produce a high-quality genome assembly, which Neafsey expects will replace the 10-year-old Sanger assembly for Aedes aegypti. The new assembly reduces the number of contigs by at least 10-fold, boosts the contig N50 to nearly 2 Mb, and features more complete gene content.

Read More »

Wednesday, February 26, 2020

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more…

Read More »

1 2

Subscribe for blog updates:

Archives