April 21, 2020  |  

Complete genome sequence of Caulobacter flavus RHGG3T, a type species of the genus Caulobacter with plant growth-promoting traits and heavy metal resistance.

Caulobacter flavus RHGG3T, a novel type species in the genus Caulobacter, originally isolated from rhizosphere soil of watermelon (Citrullus lanatus), has the ability to improve the growth of watermelon seedling and tolerate heavy metals. In vitro, C. flavus RHGG3T was able to solubilize phosphate (80.56 mg L-1), produce indole-3-acetic acid (IAA) (11.58 mg L-1) and was resistant to multiple heavy metals (copper, zinc, cadmium, cobalt and lead). Inoculating watermelon with this strain increased shoot and root length by 22.1% and 43.7%, respectively, and the total number of lateral roots by 55.9% compared to non-inoculated watermelon. In this study, we present the complete genome sequence of C. flavus RHGG3T, which was comprised of a single circular chromosome of 5,659,202 bp with a G?+?C content of 69.25%. An annotation analysis revealed that the C. flavus RHGG3T genome contained 5172 coding DNA sequences, 9 rRNA and 55 tRNA genes. Genes related to plant growth promotion (PGP), such as those associated with phosphate solubilization, nitrogen fixation, IAA, phenazine, volatile compounds, spermidine and cobalamin synthesis, were found in the C. flavus RHGG3T genome. Some genes responsible for heavy metal tolerance were also identified. The genome sequence of strain RHGG3T reported here provides new insight into the molecular mechanisms underlying the promotion of plant growth and the resistance to heavy metals in C. flavus. This study will be valuable for further exploration of the biotechnological applications of strain RHGG3T in agriculture.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.