June 1, 2021  |  

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences about evolutionary strategies that are otherwise missed by the coverage biases associated with short- read sequencing technologies. Additional benefits afforded by SMRT Sequencing include the simultaneous capability to detect epigenomic modifications and obtain full-length cDNA transcripts that obsolete the need for assembly. With direct sequencing of DNA in real-time, this has resulted in the identification of numerous base modifications and motifs, which genome-wide profiles have linked to specific methyltransferase activities. Our new offering, the Iso-Seq Application, allows for the accurate differentiation between transcript isoforms that are difficult to resolve with short-read technologies. PacBio reads easily span transcripts such that both 5’/3’ primers for cDNA library generation and the poly-A tail are observed. As such, exon configuration and intron retention events can be analyzed without ambiguity. This technological advance is useful for characterizing transcript diversity and improving gene structure annotations in reference genomes. We review solutions available with SMRT Sequencing, from targeted sequencing efforts to obtaining reference genomes (>100 Mb). This includes strategies for identifying microsatellites and conducting phylogenetic comparisons with targeted gene families. We highlight how to best leverage our long reads that have exceeded 20 kb in length for research investigations, as well as currently available bioinformatics strategies for analysis. Benefits for these applications are further realized with consistent use of size selection of input sample using the BluePippin™ device from Sage Science as demonstrated in our genome improvement projects. Using the latest P5-C3 chemistry on model organisms, these efforts have yielded an observed contig N50 of ~6 Mb, with the longest contig exceeding 12.5 Mb and an average base quality of QV50.


June 1, 2021  |  

Assembly of complete KIR haplotypes from a diploid individual by the direct sequencing of full-length fosmids.

We show that linearizing and directly sequencing full-length fosmids simplifies the assembly problem such that it is possible to unambiguously assemble individual haplotypes for the highly repetitive 100-200 kb killer Ig-like receptor (KIR) gene loci of chromosome 19. A tiling of targeted fosmids can be used to clone extended lengths of genomic DNA, 100s of kb in length, but repeat complexity in regions of particular interest, such as the KIR locus, means that sequence assembly of pooled samples into complete haplotypes is difficult and in many cases impossible. The current maximum read length generated by SMRT Sequencing exceeds the length of a 40 kb fosmid; it is therefore possible to span an entire fosmid in one sequencing read. Shearing, sequencing and assembling fosmids in a shotgun approach is prone to errors when the underlying sequence is highly repetitive. We show that it is possible to directly sequence linearized fosmids and generate a high-quality consensus by simple alignment, removing the need for an error-prone assembly step. The high-quality sequence of complete fosmids can then be tiled into full haplotypes. We demonstrate the method on DNA samples from a number of individuals and fully recover the sequence of both haplotypes from a pool of KIR fosmids. The ability to haplotype and sequence complex immunogenetic regions will bring exciting opportunities to explore the evolution of disease associations of the immune sub-genome. This simple and robust approach can be scaled-up allowing a complex genomic region to be sequenced at a population level. We expect such sequencing to be valuable in disease association research.


June 1, 2021  |  

Introduction to SMRT informatics developers conference

2015 SMRT Informatics Developers Conference Presentation Slides: Kevin Corcoran of PacBio provided a brief review of community involvement in the development of analysis tools and showed a preview of upcoming sample preparation, chemistry and informatics improvements.


June 1, 2021  |  

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these efforts, the fine mapping of causal variants of immune genes for their well-documented association with cancer, drug-induced hypersensitivity and immune-related diseases, has been slower than expected. This has in many ways limited our understanding of the mechanisms leading to immune disease. In the present work, we demonstrate the advantages of long reads delivered by SMRT Sequencing for assembling complete haplotypes of MHC and KIR gene clusters, as well as calling correct genotypes of genes comprised within them. All the genotype information is detected at allele- level with full phasing information across SNP-poor regions. Genotypes were called correctly from targeted gene amplicons, haplotypes, as well as from a completely assembled 5 Mb contig of the MHC region from a de novo assembly of whole genome shotgun data. De novo analysis pipeline used in all these approaches allowed for reference-free analysis without imputation, a key for interrogation without prior knowledge about ethnic backgrounds. These methods are thus easily adoptable for previously uncharacterized human or non-human species.


June 1, 2021  |  

Multiplex target enrichment using barcoded multi-kilobase fragments and probe-based capture technologies

Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio® long-read sequencing, these technologies can capture 5 kb fragments of genomic DNA (gDNA), which are useful for interrogating intronic, exonic, and regulatory regions, characterizing complex structural variations, distinguishing between gene duplications and pseudogenes, and interpreting variant haplotyes. In addition, SMRT® Sequencing offers the lowest GC-bias and can sequence through repetitive regions. We demonstrate the additional insights possible by using in-depth long read capture sequencing for key immunology, drug metabolizing, and disease causing genes such as HLA, filaggrin, and cancer associated genes.


June 1, 2021  |  

“SMRTer Confirmation”: Scalable clinical read-through variant confirmation using the Pacific Biosciences SMRT Sequencing platform

Next-generation sequencing (NGS) has significantly improved the cost and turnaround time for diagnostic genetic tests. ACMG recommends variant confirmation by an orthogonal method, unless sufficiently high sensitivity and specificity can be demonstrated using NGS alone. Most NGS laboratories make extensive use of Sanger sequencing for secondary confirmation of single nucleotide variants (SNVs) and indels, representing a large fraction of the cost and time required to deliver high quality genetic testing data to clinicians and patients. Despite its established data quality, Sanger is not a high-throughput method by today’s standards from either an assay or analysis standpoint as it can involve manual review of Sanger traces and is not amenable to multiplexing. Toward a scalable solution for confirmation, Invitae has developed a fully automated and LIMS-tracked assay and informatics pipeline that utilizes the Pacific Biosciences SMRT sequencing platform. Invitae’s pipeline generates PCR amplicons that encompass the variant(s) of interest, which are converted to closed DNA structures (SMRTbells) and sequenced in pools of 96 per SMRTcell. Each amplicon is appended with a 16nt barcode that encodes the patient and variant IDs. Per-sample de-multiplexing, alignment, variant calling, and confirmation resolution are handled via an automated pipeline. The confirmation process was validated by analyzing 243 clinical SNVs and indels in parallel with the gold standard Sanger sequencing method. Amplicons were sequenced and analyzed in technical replicates to demonstrate reproducibility. In this study, the PacBio-based confirmation pipeline demonstrated high reproducibility (97.5%), and outperformed Sanger in the fraction of primary NGS variants confirmed (PacBio = 93.4% and 94.7% confirmed across two replicates, Sanger = 84.8%) while having 100% concordance of confirmation status among overlapping confirmation calls.


June 1, 2021  |  

Characterizing the pan-genome of maize with PacBio SMRT Sequencing

Maize is an amazingly diverse crop. A study in 20051 demonstrated that half of the genome sequence and one-third of the gene content between two inbred lines of maize were not shared. This diversity, which is more than two orders of magnitude larger than the diversity found between humans and chimpanzees, highlights the inability of a single reference genome to represent the full pan-genome of maize and all its variants. Here we present and review several efforts to characterize the complete diversity within maize using the highly accurate long reads of PacBio Single Molecule, Real-Time (SMRT) Sequencing. These methods provide a framework for a pan-genomic approach that can be applied to studies of a wide variety of important crop species.


June 1, 2021  |  

A workflow for the comprehensive detection and prioritization of variants in human genomes with PacBio HiFi reads

PacBio HiFi reads (minimum 99% accuracy, 15-25 kb read length) have emerged as a powerful data type for comprehensive variant detection in human genomes. The HiFi read length extends confident mapping and variant calling to repetitive regions of the genome that are not accessible with short reads. Read length also improves detection of structural variants (SVs), with recall exceeding that of short reads by over 30%. High read quality allows for accurate single nucleotide variant and small indel detection, with precision and recall matching that of short reads. While many tools have been developed to take advantage of these qualities of HiFi reads, there is no end-to-end workflow for the filtering and prioritization of variants uniquely detected with long reads for rare and undiagnosed disease research. We have developed a flexible, modular workflow and web portal for variant analysis from HiFi reads and applied it to a set of rare disease cases unsolved by short-read whole genome sequencing. We expect that broad application of long-read variant detection workflows will solve many more rare disease cases. We have made these tools available at https://github.com/williamrowell/pbRUGD-workflow, and we hope they serve a starting point for developing a robust analysis framework for long read variant detection for rare diseases.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.