X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and…

Read More »

Tuesday, April 21, 2020

Evolution of a 72-kb cointegrant, conjugative multiresistance plasmid from early community-associated methicillin-resistant Staphylococcus aureus isolates.

Horizontal transfer of plasmids encoding antimicrobial-resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s the first CA-MRSA isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline and penicillin-resistance genes on plasmid pWBG753 (~30 kb). WA-5 and pWBG753 appeared only briefly in WA, however, fusidic-acid-resistance plasmids related to pWBG753 were also present in the first European CA-MRSA at the time. Here we characterized a 72-kb conjugative plasmid pWBG731 present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a…

Read More »

Tuesday, April 21, 2020

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions…

Read More »

Tuesday, April 21, 2020

Large Fragment Deletions Induced by Cas9 Cleavage While Not in BEs System in Rabbit

CRISPR-Cas9 and BEs system are poised to become the gene editing tool of choice in clinical contexts, however large fragment deletion was found in Cas9-mediated mutation cells without animal level validation. By analyzing 16 gene-edited rabbit lines (including 112 rabbits) generated using SpCas9, BEs, xCas9 and xCas9-BEs with long-range PCR genotyping and long-read sequencing by PacBio platform, we show that extending thousands of bases fragment deletions in single-guide RNA/Cas9 and xCas9 system mutation rabbit, but few large deletions were found in BEs-induced mutation rabbits. We firstly validated that no large fragment deletion induced by BEs system at animal level, suggesting…

Read More »

Tuesday, April 21, 2020

Genomic analysis of Marinobacter sp. NP-4 and NP-6 isolated from the deep-sea oceanic crust on the western flank of the Mid-Atlantic Ridge

Two Marinobacter sp. NP-4 and NP-6 were isolated from a deep oceanic basaltic crust at North Pond, located at the western flank of the Mid-Atlantic Ridge. These two strains are capable of using multiple carbon sources such as acetate, succinate, glucose and sucrose while take oxygen as a primary electron acceptor. The strain NP-4 is also able to grow anaerobically under 20?MPa, with nitrate as the electron acceptor, thus represents a piezotolerant. To explore the metabolic potentials of Marinobacter sp. NP-4 and NP-6, the complete genome of NP-4 and close-to-complete genome of NP-6 were sequenced. The genome of NP-4 contains…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503 T, a marine psychrophilic bacterium isolated from Antarctica

A marine psychrophilic bacterium _Paenisporosarcina antarctica_ CGMCC 1.6503T (= JCM 14646T) was isolated off King George Island, Antarctica (62°13’31? S 58°57’08? W). In this study, we report the complete genome sequence of _Paenisporosarcina antarctica_, which is comprised of 3,972,524?bp with a mean G?+?C content of 37.0%. By gene function and metabolic pathway analyses, studies showed that strain CGMCC 1.6503T encodes a series of genes related to cold adaptation, including encoding fatty acid desaturases, dioxygenases, antifreeze proteins and cold shock proteins, and possesses several two-component regulatory systems, which could assist this strain in responding to the cold stress, the oxygen stress…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from deep-sea sediment

Pseudoalteromonas strains are widely distributed in the marine environment and most have attracted considerable interest owing to their ability to synthesize biologically active metabolites. In this study, we report and describe the genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from the deep-sea sediment of Pacific Ocean at a depth of 2000?m. The complete genome consisted of three contigs with a total genome size of 4,167,407?bp and a GC content of 40.76?l%, and was predicted to contain 4194 protein-coding genes and 131 non-coding RNA genes. The strain MEBiC 03485 genome was also shown to contain genes for diverse metabolic pathways.…

Read More »

Tuesday, April 21, 2020

Complete genome sequence of Bacillus velezensis JT3-1, a microbial germicide isolated from yak feces

Bacillus velezensis JT3-1 is a probiotic strain isolated from feces of the domestic yak (Bos grunniens) in the Gansu province of China. It has strong antagonistic activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, Mannheimia haemolytica, Staphylococcus hominis, Clostridium perfringens, and Mycoplasma bovis. These properties have made the JT3-1 strain the focus of commercial interest. In this study, we describe the complete genome sequence of JT3-1, with a genome size of 3,929,799 bp, 3761 encoded genes and an average GC content of 46.50%. Whole genome sequencing of Bacillus velezensis JT3-1 will lay a good foundation for elucidation of…

Read More »

Tuesday, April 21, 2020

Genome sequence analysis of 91 Salmonella Enteritidis isolates from mice caught on poultry farms in the mid 1990s.

A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The…

Read More »

Tuesday, April 21, 2020

Evolution and global transmission of a multidrug-resistant, community-associated MRSA lineage from the Indian subcontinent

The evolution and global transmission of antimicrobial resistance has been well documented in Gram-negative bacteria and healthcare-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. Here, we trace the recent origins and global spread of a multidrug resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology…

Read More »

Tuesday, April 21, 2020

Draft Genome Sequence of Streptomyces sp. Strain RKND-216, an Antibiotic Producer Isolated from Marine Sediment in Prince Edward Island, Canada.

Streptomyces sp. strain RKND-216 was isolated from marine sediment collected in Prince Edward Island, Canada, and produces a putatively novel bioactive natural product with antitubercular activity. The genome assembly consists of two contigs covering 5.61?Mb. Genome annotation identified 4,618 predicted protein-coding sequences and 19 predicted natural product biosynthetic gene clusters.Copyright © 2019 Liang et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Enterococcus faecalis Strain SGAir0397, Isolated from a Tropical Air Sample Collected in Singapore.

Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.Copyright © 2019 Purbojati et al.

Read More »

Tuesday, April 21, 2020

Genome Sequences and Methylation Patterns of Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, Two Extremely Halophilic Archaea from a Bolivian Salt Mine.

Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE.Copyright © 2019 DasSarma et al.

Read More »

1 2 3 11

Subscribe for blog updates:

Archives