Menu
April 21, 2020  |  

A siphonous macroalgal genome suggests convergent functions of homeobox genes in algae and land plants.

Genome evolution and development of unicellular, multinucleate macroalgae (siphonous algae) are poorly known, although various multicellular organisms have been studied extensively. To understand macroalgal developmental evolution, we assembled the ~26?Mb genome of a siphonous green alga, Caulerpa lentillifera, with high contiguity, containing 9,311 protein-coding genes. Molecular phylogeny using 107 nuclear genes indicates that the diversification of the class Ulvophyceae, including C. lentillifera, occurred before the split of the Chlorophyceae and Trebouxiophyceae. Compared with other green algae, the TALE superclass of homeobox genes, which expanded in land plants, shows a series of lineage-specific duplications in this siphonous macroalga. Plant hormone signalling components were also expanded in a lineage-specific manner. Expanded transport regulators, which show spatially different expression, suggest that the structural patterning strategy of a multinucleate cell depends on diversification of nuclear pore proteins. These results not only imply functional convergence of duplicated genes among green plants, but also provide insight into evolutionary roots of green plants. Based on the present results, we propose cellular and molecular mechanisms involved in the structural differentiation in the siphonous alga. © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


April 21, 2020  |  

DNA methylation analysis.

DNA methylation is a process by which methyl groups are added to cytosine or adenine. DNA methylation can change the activity of the DNA molecule without changing the sequence. Methylation of 5-methylcytosine (5mC) is widespread in both eukaryotes and prokaryotes, and it is a very important epigenetic modification event, which can regulate gene activity and influence a number of key processes such as genomic imprinting, cell differentiation, transcriptional regulation, and chromatin remodeling. Profiling DNA methylation across the genome is critical to understanding the influence of methylation in normal biology and diseases including cancer. Recent discoveries of 5-methylcytosine (5mC) oxidation derivatives including 5-hydroxymethylcytosine (5hmC), 5-formylcytsine (5fC), and 5-carboxycytosine (5caC) in mammalian genome further expand our understanding of the methylation regulation. Genome-wide analyses such as microarrays and next-generation sequencing technologies have been used to assess large fractions of the methylome. A number of different quantitative approaches have also been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing, pyrosequencing etc. These methods have been used to generate base-resolution maps of 5mC and its oxidation derivatives in genomic samples. The focus of this chapter is to provide the methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.


April 21, 2020  |  

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots.

Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2?=?0.366; P?


April 21, 2020  |  

Genome and transcriptome sequencing of the astaxanthin-producing green microalga, Haematococcus pluvialis.

Haematococcus pluvialis is a freshwater species of Chlorophyta, family Haematococcaceae. It is well known for its capacity to synthesize high amounts of astaxanthin, which is a strong antioxidant that has been utilized in aquaculture and cosmetics. To improve astaxanthin yield and to establish genetic resources for H. pluvialis, we performed whole-genome sequencing, assembly, and annotation of this green microalga. A total of 83.1 Gb of raw reads were sequenced. After filtering the raw reads, we subsequently generated a draft assembly with a genome size of 669.0?Mb, a scaffold N50 of 288.6?kb, and predicted 18,545 genes. We also established a robust phylogenetic tree from 14 representative algae species. With additional transcriptome data, we revealed some novel potential genes that are involved in the synthesis, accumulation, and regulation of astaxanthin production. In addition, we generated an isoform-level reference transcriptome set of 18,483 transcripts with high confidence. Alternative splicing analysis demonstrated that intron retention is the most frequent mode. In summary, we report the first draft genome of H. pluvialis. These genomic resources along with transcriptomic data provide a solid foundation for the discovery of the genetic basis for theoretical and commercial astaxanthin enrichment.


April 21, 2020  |  

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.


April 21, 2020  |  

Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria.

Although microorganisms are known to dominate Earth’s biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.


April 21, 2020  |  

Full-length transcriptome sequences obtained by a combination of sequencing platforms applied to heat shock proteins and polyunsaturated fatty acids biosynthesis in Pyropia haitanensis

Pyropia haitanensis is a high-yield commercial seaweed in China. Pyropia haitanensis farms often suffer from problems such as severe germplasm degeneration, while the mechanisms underlying resistance to abiotic stresses remain unknown because of lacking genomic information. Although many previous studies focused on using next-generation sequencing (NGS) technologies, the short-read sequences generated by NGS generally prevent the assembly of full-length transcripts, and then limit screening functional genes. In the present study, which was based on hybrid sequencing (NGS and single-molecular real-time sequencing) of the P. haitanensis thallus transcriptome, we obtained high-quality full-length transcripts with a mean length of 2998 bp and an N50 value of 3366 bp. A total of 14,773 unigenes (93.52%) were annotated in at least one database, while approximately 60% of all unigenes were assembled by short Illumina reads. Moreover, we herein suggested that the genes involved in the biosynthesis of polyunsaturated fatty acids and heat shock proteins play an important role in the process of development and resistance to abiotic stresses in P. haitanensis. The present study, together with previously published ones, may facilitate seaweed transcriptome research.


April 21, 2020  |  

Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests.

In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

A reference genome for pea provides insight into legume genome evolution.

We report the first annotated chromosome-level reference genome assembly for pea, Gregor Mendel’s original genetic model. Phylogenetics and paleogenomics show genomic rearrangements across legumes and suggest a major role for repetitive elements in pea genome evolution. Compared to other sequenced Leguminosae genomes, the pea genome shows intense gene dynamics, most likely associated with genome size expansion when the Fabeae diverged from its sister tribes. During Pisum evolution, translocation and transposition differentially occurred across lineages. This reference sequence will accelerate our understanding of the molecular basis of agronomically important traits and support crop improvement.


April 21, 2020  |  

A High-Quality Draft Genome Sequence of Colletotrichum gloeosporioides sensu stricto SMCG1#C, a Causal Agent of Anthracnose on Cunninghamia lanceolata in China.

Colletotrichum has a broad host range and causes major yield losses of crops. The fungus Colletotrichum gloeosporioides is associated with anthracnose on Chinese fir. In this study, we present a high-quality draft genome sequence of C. gloeosporioides sensu stricto SMCG1#C, providing a reference genomic data for further research on anthracnose of Chinese fir and other hosts.


April 21, 2020  |  

Diploid Genome Assembly of the Wine Grape Carménère.

In this genome report, we describe the sequencing and annotation of the genome of the wine grape Carménère (clone 02, VCR-702). Long considered extinct, this old French wine grape variety is now cultivated mostly in Chile where it was imported in the 1850s just before the European phylloxera epidemic. Genomic DNA was sequenced using Single Molecule Real Time technology and assembled with FALCON-Unzip, a diploid-aware assembly pipeline. To optimize the contiguity and completeness of the assembly, we tested about a thousand combinations of assembly parameters, sequencing coverage, error correction and repeat masking methods. The final scaffolds provide a complete and phased representation of the diploid genome of this wine grape. Comparison of the two haplotypes revealed numerous heterozygous variants, including loss-of-function ones, some of which in genes associated with polyphenol biosynthesis. Comparisons with other publicly available grape genomes and transcriptomes showed the impact of structural variation on gene content differences between Carménère and other wine grape cultivars. Among the putative cultivar-specific genes, we identified genes potentially involved in aroma production and stress responses. The genome assembly of Carménère expands the representation of the genomic variability in grapes and will enable studies that aim to understand its distinctive organoleptic and agronomical features and assess its still elusive extant genetic variability. A genome browser for Carménère, its annotation, and an associated blast tool are available at http://cantulab.github.io/data.Copyright © 2019 Minio et al.


April 21, 2020  |  

PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions.

Cheese is a fermented dairy product that is popular for its unique flavor and nutritional value. Recent studies have shown that microorganisms in cheese play an important role in the fermentation process and determine the quality of the cheese. We collected 12 cheese samples from different regions and studied the composition of their bacterial communities using PacBio small-molecule real-time sequencing (Pacific Biosciences, Menlo Park, CA). Our data revealed 144 bacterial genera (including Lactobacillus, Streptococcus, Lactococcus, and Staphylococcus) and 217 bacterial species (including Lactococcus lactis, Streptococcus thermophilus, Staphylococcus equorum, and Streptococcus uberis). We investigated the flavor quality of the cheese samples using an electronic nose system and we found differences in flavor-quality indices among samples from different regions. We found a clustering tendency based on flavor quality using principal component analysis. We found correlations between lactic acid bacteria and the flavor quality of the cheese samples. Biodegradation and metabolism of xenobiotics, and lipid-metabolism-related pathways, were predicted to contribute to differences in cheese flavor using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). This preliminary study explored the bacterial communities in cheeses collected from different regions and their potential genome functions from the perspective of flavor quality.Copyright © 2020 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease.

Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disease that is characterized by eosinophilic hyaline intranuclear inclusions in neuronal and somatic cells. The wide range of clinical manifestations in NIID makes ante-mortem diagnosis difficult1-8, but skin biopsy enables its ante-mortem diagnosis9-12. The average onset age is 59.7 years among approximately 140 NIID cases consisting of mostly sporadic and several familial cases. By linkage mapping of a large NIID family with several affected members (Family 1), we identified a 58.1 Mb linked region at 1p22.1-q21.3 with a maximum logarithm of the odds score of 4.21. By long-read sequencing, we identified a GGC repeat expansion in the 5′ region of NOTCH2NLC (Notch 2 N-terminal like C) in all affected family members. Furthermore, we found similar expansions in 8 unrelated families with NIID and 40 sporadic NIID cases. We observed abnormal anti-sense transcripts in fibroblasts specifically from patients but not unaffected individuals. This work shows that repeat expansion in human-specific NOTCH2NLC, a gene that evolved by segmental duplication, causes a human disease.


April 21, 2020  |  

Blast Fungal Genomes Show Frequent Chromosomal Changes, Gene Gains and Losses, and Effector Gene Turnover.

Pyricularia is a fungal genus comprising several pathogenic species causing the blast disease in monocots. Pyricularia oryzae, the best-known species, infects rice, wheat, finger millet, and other crops. As past comparative and population genomics studies mainly focused on isolates of P. oryzae, the genomes of the other Pyricularia species have not been well explored. In this study, we obtained a chromosomal-level genome assembly of the finger millet isolate P. oryzae MZ5-1-6 and also highly contiguous assemblies of Pyricularia sp. LS, P. grisea, and P. pennisetigena. The differences in the genomic content of repetitive DNA sequences could largely explain the variation in genome size among these new genomes. Moreover, we found extensive gene gains and losses and structural changes among Pyricularia genomes, including a large interchromosomal translocation. We searched for homologs of known blast effectors across fungal taxa and found that most avirulence effectors are specific to Pyricularia, whereas many other effectors share homologs with distant fungal taxa. In particular, we discovered a novel effector family with metalloprotease activity, distinct from the well-known AVR-Pita family. We predicted 751 gene families containing putative effectors in 7 Pyricularia genomes and found that 60 of them showed differential expression in the P. oryzae MZ5-1-6 transcriptomes obtained under experimental conditions mimicking the pathogen infection process. In summary, this study increased our understanding of the structural, functional, and evolutionary genomics of the blast pathogen and identified new potential effector genes, providing useful data for developing crops with durable resistance. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


April 21, 2020  |  

Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes.

Metagenomic samples are snapshots of complex ecosystems at work. They comprise hundreds of known and unknown species, contain multiple strain variants and vary greatly within and across environments. Many microbes found in microbial communities are not easily grown in culture making their DNA sequence our only clue into their evolutionary history and biological function. Metagenomic assembly is a computational process aimed at reconstructing genes and genomes from metagenomic mixtures. Current methods have made significant strides in reconstructing DNA segments comprising operons, tandem gene arrays and syntenic blocks. Shorter, higher-throughput sequencing technologies have become the de facto standard in the field. Sequencers are now able to generate billions of short reads in only a few days. Multiple metagenomic assembly strategies, pipelines and assemblers have appeared in recent years. Owing to the inherent complexity of metagenome assembly, regardless of the assembly algorithm and sequencing method, metagenome assemblies contain errors. Recent developments in assembly validation tools have played a pivotal role in improving metagenomics assemblers. Here, we survey recent progress in the field of metagenomic assembly, provide an overview of key approaches for genomic and metagenomic assembly validation and demonstrate the insights that can be derived from assemblies through the use of assembly validation strategies. We also discuss the potential for impact of long-read technologies in metagenomics. We conclude with a discussion of future challenges and opportunities in the field of metagenomic assembly and validation. © The Author 2017. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.