Many scientists are using PacBio Single Molecule, Real-Time (SMRT) Sequencing to explore the genomes and transcriptomes of a wide variety of marine species and ecosystems. These studies are already adding to our understanding of how marine species adapt and evolve, contributing to conservation efforts, and informing how we can optimize food production through efficient aquaculture.
Highly accurate long reads – HiFi reads – with single-molecule resolution make Single Molecule, Real-Time (SMRT) Sequencing ideal for full-length 16S rRNA sequencing, shotgun metagenomic profiling, and metagenome assembly.
With this PacBio Application Consumable Bundles Purchasing Guide, you can easily order the required consumables for the Sequel II System. Simply choose your SMRT Sequencing Application and with the single part number place your order to get started.
With PacBio Single Molecule, Real-Time (SMRT) Sequencing on the Sequel IIe System you can characterize whole genomes and transcriptomes with just one SMRT Cell. Explore our applications and pricing to get your sequencing project started.
The Sequel II and IIe Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce highly accurate long reads, known as HiFi reads, for sequencing data you and your customers can trust.
PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.
This tutorial provides an overview of the Circular Consensus Sequence (CCS) analysis application. The CCS algorithm is used in applications that require distinguishing closely related DNA molecules in the same sample. Applications of CCS include profiling microbial communities, resolving viral populations and accurately identifying somatic variations within heterogeneous tumor cells. This tutorial covers features of SMRT Link v5.0.0.
Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.
In this AGBT 2017 talk, PacBio CSO Jonas Korlach provided a technology roadmap for the Sequel System, including plans the continue performance and throughput increases through early 2019. Per SMRT Cell throughput of the Sequel System is expected to double this year and again next year. Together with a new higher-capacity SMRT Cell expected to be released by the end of 2018, these improvements result in a ~30-fold increase or ~150 Gb / SMRT Cell allowing a real $1000 real de novo human genome assembly. Also discussed: Additional application protocol improvements, new chemistry and software updates, and a look at…
SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.
In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.
PacBio Customers present their latest research in short talks at our User Group Meeting. The applications presented span the range of SMRT Sequencing applications from users from around North America.
In this PacBio User Group Meeting presentation, Garth Ehrlich of Drexel University College of Medicine shares his work on developing a microbiome assay that uses SMRT Sequencing to provide high-quality coverage of the 16S bacterial rRNA for species identification. The microbiome analysis pipeline, MCSMRT, takes advantage of PacBio circular consensus sequencing (CCS) technology and second-generation pathway analysis system for generating extremely high-fidelity sequences that provide the user with ultra-high-confidence species-level microbiome data.
This webinar, presented by Nisha Pillai, provides an overview of amplicon sequencing to target specific regions of a genome using PacBio Single Molecule, Real-Time (SMRT) Sequencing. This session provides an overview of bioinformatics approaches for PacBio amplicon analysis including circular consensus sequencing and long amplicon analysis.