Menu
September 22, 2019  |  

SvABA: genome-wide detection of structural variants and indels by local assembly.

Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA’s performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ~4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs.© 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Multiplex assessment of protein variant abundance by massively parallel sequencing.

Determining the pathogenicity of genetic variants is a critical challenge, and functional assessment is often the only option. Experimentally characterizing millions of possible missense variants in thousands of clinically important genes requires generalizable, scalable assays. We describe variant abundance by massively parallel sequencing (VAMP-seq), which measures the effects of thousands of missense variants of a protein on intracellular abundance simultaneously. We apply VAMP-seq to quantify the abundance of 7,801 single-amino-acid variants of PTEN and TPMT, proteins in which functional variants are clinically actionable. We identify 1,138 PTEN and 777 TPMT variants that result in low protein abundance, and may be pathogenic or alter drug metabolism, respectively. We observe selection for low-abundance PTEN variants in cancer, and show that p.Pro38Ser, which accounts for ~10% of PTEN missense variants in melanoma, functions via a dominant-negative mechanism. Finally, we demonstrate that VAMP-seq is applicable to other genes, highlighting its generalizability.


September 22, 2019  |  

A multiplex homology-directed DNA repair assay reveals the impact of more than 1,000 BRCA1 missense substitution variants on protein function.

Loss-of-function pathogenic variants in BRCA1 confer a predisposition to breast and ovarian cancer. Genetic testing for sequence changes in BRCA1 frequently reveals a missense variant for which the impact on cancer risk and on the molecular function of BRCA1 is unknown. Functional BRCA1 is required for the homology-directed repair (HDR) of double-strand DNA breaks, a critical activity for maintaining genome integrity and tumor suppression. Here, we describe a multiplex HDR reporter assay for concurrently measuring the effects of hundreds of variants of BRCA1 for their role in DNA repair. Using this assay, we characterized the effects of 1,056 amino acid substitutions in the first 192 residues of BRCA1. Benchmarking these results against variants with known effects on DNA repair function or on cancer predisposition, we demonstrate accurate discrimination of loss-of-function versus benign missense variants. We anticipate that this assay can be used to functionally characterize BRCA1 missense variants at scale, even before the variants are observed in results from genetic testing. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Correcting palindromes in long reads after whole-genome amplification.

Next-generation sequencing requires sufficient DNA to be available. If limited, whole-genome amplification is applied to generate additional amounts of DNA. Such amplification often results in many chimeric DNA fragments, in particular artificial palindromic sequences, which limit the usefulness of long sequencing reads.Here, we present Pacasus, a tool for correcting such errors. Two datasets show that it markedly improves read mapping and de novo assembly, yielding results similar to these that would be obtained with non-amplified DNA.With Pacasus long-read technologies become available for sequencing targets with very small amounts of DNA, such as single cells or even single chromosomes.


September 22, 2019  |  

Diagnostic and Therapeutic Strategies for Fluoropyrimidine Treatment of Patients Carrying Multiple DPYD Variants.

DPYD genotyping prior to fluoropyrimidine treatment is increasingly implemented in clinical care. Without phasing information (i.e., allelic location of variants), current genotype-based dosing guidelines cannot be applied to patients carrying multiple DPYD variants. The primary aim of this study is to examine diagnostic and therapeutic strategies for fluoropyrimidine treatment of patients carrying multiple DPYD variants. A case series of patients carrying multiple DPYD variants is presented. Different genotyping techniques were used to determine phasing information. Phenotyping was performed by dihydropyrimidine dehydrogenase (DPD) enzyme activity measurements. Publicly available databases were queried to explore the frequency and phasing of variants of patients carrying multiple DPYD variants. Four out of seven patients carrying multiple DPYD variants received a full dose of fluoropyrimidines and experienced severe toxicity. Phasing information could be retrieved for four patients. In three patients, variants were located on two different alleles, i.e., in trans. Recommended dose reductions based on the phased genotype differed from the phenotype-derived dose reductions in three out of four cases. Data from publicly available databases show that the frequency of patients carrying multiple DPYD variants is low (< 0.2%), but higher than the frequency of the commonly tested DPYD*13 variant (0.1%). Patients carrying multiple DPYD variants are at high risk of developing severe toxicity. Additional analyses are required to determine the correct dose of fluoropyrimidine treatment. In patients carrying multiple DPYD variants, we recommend that a DPD phenotyping assay be carried out to determine a safe starting dose.


September 21, 2019  |  

Discovery and genotyping of structural variation from long-read haploid genome sequence data.

In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that >89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF > 1%). We estimate that this theoretical human diploid differs by as much as ~16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ~59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.© 2017 Huddleston et al.; Published by Cold Spring Harbor Laboratory Press.


September 21, 2019  |  

Long-read genome sequencing identifies causal structural variation in a Mendelian disease.

PurposeCurrent clinical genomics assays primarily utilize short-read sequencing (SRS), but SRS has limited ability to evaluate repetitive regions and structural variants. Long-read sequencing (LRS) has complementary strengths, and we aimed to determine whether LRS could offer a means to identify overlooked genetic variation in patients undiagnosed by SRS.MethodsWe performed low-coverage genome LRS to identify structural variants in a patient who presented with multiple neoplasia and cardiac myxomata, in whom the results of targeted clinical testing and genome SRS were negative.ResultsThis LRS approach yielded 6,971 deletions and 6,821 insertions?>?50?bp. Filtering for variants that are absent in an unrelated control and overlap a disease gene coding exon identified three deletions and three insertions. One of these, a heterozygous 2,184?bp deletion, overlaps the first coding exon of PRKAR1A, which is implicated in autosomal dominant Carney complex. RNA sequencing demonstrated decreased PRKAR1A expression. The deletion was classified as pathogenic based on guidelines for interpretation of sequence variants.ConclusionThis first successful application of genome LRS to identify a pathogenic variant in a patient suggests that LRS has significant potential for the identification of disease-causing structural variation. Larger studies will ultimately be required to evaluate the potential clinical utility of LRS.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.