Menu
July 7, 2019  |  

Adaptation of surface-associated bacteria to the open ocean: A genomically distinct subpopulation of Phaeobacter gallaeciensis Ccolonizes Pacific mesozooplankton.

The marine Roseobacter group encompasses numerous species which occupy a large variety of ecological niches. However, members of the genus Phaeobacter are specifically adapted to a surface-associated lifestyle and have so far been found nearly exclusively in disjunct, man-made environments including shellfish and fish aquacultures, as well as harbors. Therefore, the possible natural habitats, dispersal and evolution of Phaeobacter spp. have largely remained obscure. Applying a high-throughput cultivation strategy along a longitudinal Pacific transect, the present study revealed for the first time a widespread natural occurrence of Phaeobacter in the marine pelagial. These bacteria were found to be specifically associated to mesoplankton where they constitute a small but detectable proportion of the bacterial community. The 16S rRNA gene sequences of 18 isolated strains were identical to that of Phaeobacter gallaeciensis DSM26640(T) but sequences of internal transcribed spacer and selected genomes revealed that the strains form a distinct clade within P. gallaeciensis. The genomes of the Pacific and the aquaculture strains were highly conserved and had a fraction of the core genome of 89.6%, 80 synteny breakpoints, and differed 2.2% in their nucleotide sequences. Diversification likely occurred through neutral mutations. However, the Pacific strains exclusively contained two active Type I restriction modification systems which is commensurate with a reduced acquisition of mobile elements in the Pacific clade. The Pacific clade of P. gallaeciensis also acquired a second, homolog phosphonate transport system compared to all other P. gallaeciensis. Our data indicate that a previously unknown, distinct clade of P. gallaeciensis acquired a limited number of clade-specific genes that were relevant for its association with mesozooplankton and for colonization of the marine pelagial. The divergence of the Pacific clade most likely was driven by the adaptation to this novel ecological niche rather than by geographic isolation.


July 7, 2019  |  

Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity.

Research findings on probiotics highlight their importance in repressing harmful bacteria, leading to more extensive research on their potential applications. We analysed the genome of Lactobacillus fermentum SK152, which was isolated from the Korean traditional fermented vegetable dish kimchi, to determine the genetic makeup and genetic factors responsible for the antimicrobial activity of L. fermentum SK152 and performed a comparative genome analysis with other L. fermentum strains. The genome of L. fermentum SK152 was found to comprise a complete circular chromosome of 2092 273 bp, with an estimated GC content of 51.9% and 2184 open reading frames. It consisted of 2038 protein-coding genes and 73 RNA-coding genes. Moreover, a gene encoding a putative endolysin was found. A comparative genome analysis with other L. fermentum strains showed that SK152 is closely related to L. fermentum 3872 and F-6. An evolutionary analysis identified five positively selected genes that encode proteins associated with transport, survival and stress resistance. These positively selected genes may be essential for L. fermentum to colonise and survive in the stringent environment of the human gut and exert its beneficial effects. Our findings highlight the potential benefits of SK152.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Harnessing whole genome sequencing in medical mycology.

Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens.Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host.Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.


July 7, 2019  |  

Gene acquisition by a distinct phyletic group within Streptococcus pneumoniae promotes adhesion to the ocular epithelium.

Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this study, we sequenced the genomes of six pneumococcal strains isolated from eye infections. The conjunctivitis isolates are grouped in a distinct phyletic group together with a subset of nasopharyngeal isolates. The keratitis (infection of the cornea) and endophthalmitis (infection of the vitreous body) isolates are grouped with the remainder of pneumococcal strains. Phenotypic characterization is consistent with morphological differences associated with the distinct phyletic group. Specifically, isolates from the distinct phyletic group form aggregates in planktonic cultures and chain-like structures in biofilms grown on abiotic surfaces. To begin to investigate the association between genotype and epidemiology, we focused on a predicted surface-exposed adhesin (SspB) encoded exclusively by this distinct phyletic group. Phylogenetic analysis of the gene encoding SspB in the context of a streptococcal species tree suggests that sspB was acquired by lateral gene transfer from Streptococcus suis. Furthermore, an sspB deletion mutant displays decreased adherence to cultured cells from the ocular epithelium compared to the isogenic wild-type and complemented strains. Together these findings suggest that acquisition of genes from outside the species has contributed to pneumococcal tissue tropism by enhancing the ability of a subset of strains to infect the ocular epithelium causing conjunctivitis. IMPORTANCE Changes in the gene content of pathogens can modify their ability to colonize and/or survive in different body sites in the human host. In this study, we investigate a gene acquisition event and its role in the pathogenesis of Streptococccus pneumoniae (pneumococcus). Our findings suggest that the gene encoding the predicted surface protein SspB has been transferred from Streptococcus suis (a distantly related streptococcal species) into a distinct set of pneumococcal strains. This group of strains distinguishes itself from the remainder of pneumococcal strains by extensive differences in genomic composition and by the ability to cause conjunctivitis. We find that the presence of sspB increases adherence of pneumococcus to the ocular epithelium. Thus, our data support the hypothesis that a subset of pneumococcal strains has gained genes from neighboring species that enhance their ability to colonize the epithelium of the eye, thus expanding into a new niche.


July 7, 2019  |  

Single-virion sequencing of lamivudine-treated HBV populations reveal population evolution dynamics and demographic history.

Viral populations are complex, dynamic, and fast evolving. The evolution of groups of closely related viruses in a competitive environment is termed quasispecies. To fully understand the role that quasispecies play in viral evolution, characterizing the trajectories of viral genotypes in an evolving population is the key. In particular, long-range haplotype information for thousands of individual viruses is critical; yet generating this information is non-trivial. Popular deep sequencing methods generate relatively short reads that do not preserve linkage information, while third generation sequencing methods have higher error rates that make detection of low frequency mutations a bioinformatics challenge. Here we applied BAsE-Seq, an Illumina-based single-virion sequencing technology, to eight samples from four chronic hepatitis B (CHB) patients – once before antiviral treatment and once after viral rebound due to resistance.With single-virion sequencing, we obtained 248-8796 single-virion sequences per sample, which allowed us to find evidence for both hard and soft selective sweeps. We were able to reconstruct population demographic history that was independently verified by clinically collected data. We further verified four of the samples independently through PacBio SMRT and Illumina Pooled deep sequencing.Overall, we showed that single-virion sequencing yields insight into viral evolution and population dynamics in an efficient and high throughput manner. We believe that single-virion sequencing is widely applicable to the study of viral evolution in the context of drug resistance and host adaptation, allows differentiation between soft or hard selective sweeps, and may be useful in the reconstruction of intra-host viral population demographic history.


July 7, 2019  |  

Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity.

The gypsy moth, Lymantria dispar L., is one of the most destructive forest pests in the world. While the subspecies established in North America is the European gypsy moth (L. dispar dispar), whose females are flightless, the two Asian subspecies, L. dispar asiatica and L. dispar japonica, have flight-capable females, enhancing their invasiveness and warranting precautionary measures to prevent their permanent establishment in North America. Various molecular tools have been developed to help distinguish European from Asian subspecies, several of which are based on the mitochondrial barcode region. In an effort to identify additional informative markers, we undertook the sequencing and analysis of the mitogenomes of 10 geographic variants of L. dispar, including two or more variants of each subspecies, plus the closely related L. umbrosa as outgroup. Several regions of the gypsy moth mitogenomes displayed nucleotide substitutions with potential usefulness for the identification of subspecies and/or geographic origins. Interestingly, the mitogenome of one geographic variant displayed significant divergence relative to the remaining variants, raising questions about its taxonomic status. Phylogenetic analyses placed this population from northern Iran as basal to the L. dispar clades. The present findings will help improve diagnostic tests aimed at limiting risks of AGM invasions.


July 7, 2019  |  

Complete and draft genome sequences of eight oceanic Pseudomonas aeruginosa strains.

Pseudomonas aeruginosa is one of the most common model bacterial species, and genomes of hundreds of strains of this species have been sequenced to date. However, currently there is only one available genome of an oceanic isolate. Here, we report two complete and six draft genome sequences of P. aeruginosa isolates from the open ocean. Copyright © 2017 Kumagai et al.


July 7, 2019  |  

Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees.

The order Hymenochaetales of white rot fungi contain some of the most aggressive wood decayers causing tree deaths around the world. Despite their ecological importance and the impact of diseases they cause, little is known about the evolution and transmission patterns of these pathogens. Here, we sequenced and undertook comparative genomic analyses of Hymenochaetales genomes using brown root rot fungus Phellinus noxius, wood-decomposing fungus Phellinus lamaensis, laminated root rot fungus Phellinus sulphurascens and trunk pathogen Porodaedalea pini. Many gene families of lignin-degrading enzymes were identified from these fungi, reflecting their ability as white rot fungi. Comparing against distant fungi highlighted the expansion of 1,3-beta-glucan synthases in P. noxius, which may account for its fast-growing attribute. We identified 13 linkage groups conserved within Agaricomycetes, suggesting the evolution of stable karyotypes. We determined that P. noxius has a bipolar heterothallic mating system, with unusual highly expanded ~60 kb A locus as a result of accumulating gene transposition. We investigated the population genomics of 60 P. noxius isolates across multiple islands of the Asia Pacific region. Whole-genome sequencing showed this multinucleate species contains abundant poly-allelic single nucleotide polymorphisms with atypical allele frequencies. Different patterns of intra-isolate polymorphism reflect mono-/heterokaryotic states which are both prevalent in nature. We have shown two genetically separated lineages with one spanning across many islands despite the geographical barriers. Both populations possess extraordinary genetic diversity and show contrasting evolutionary scenarios. These results provide a framework to further investigate the genetic basis underlying the fitness and virulence of white rot fungi.© 2017 John Wiley & Sons Ltd.


July 7, 2019  |  

Genomics of parallel adaptation at two timescales in Drosophila.

Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and its sister species D. simulans have revealed that a substantial proportion of proteins and amino acid residues exhibit adaptive divergence on a roughly few million years long timescale. Here we use population genomic approaches to attack the problem of parallelism between D. melanogaster and a highly diverged conger, D. hydei, on two timescales. D. hydei, a member of the repleta group of Drosophila, is similar to D. melanogaster, in that it too appears to be a recently cosmopolitan species and recent colonizer of high latitude environments. We observed parallelism both for genes exhibiting latitudinal allele frequency differentiation within species and for genes exhibiting recurrent adaptive protein divergence between species. Greater parallelism was observed for long-term adaptive protein evolution and this parallelism includes not only the specific genes/proteins that exhibit adaptive evolution, but extends even to the magnitudes of the selective effects on interspecific protein differences. Thus, despite the roughly 50 million years of time separating D. melanogaster and D. hydei, and despite their considerably divergent biology, they exhibit substantial parallelism, suggesting the existence of a fundamental predictability of adaptive evolution in the genus.


July 7, 2019  |  

Rapid gene turnover as a significant source of genetic variation in a recently seeded population of a pathogen.

Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.


July 7, 2019  |  

Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17?×?10-8 ~3.87?×?10-8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.


July 7, 2019  |  

Hidden genetic variation shapes the structure of functional elements in Drosophila.

Mutations that add, subtract, rearrange, or otherwise refashion genome structure often affect phenotypes, although the fragmented nature of most contemporary assemblies obscures them. To discover such mutations, we assembled the first new reference-quality genome of Drosophila melanogaster since its initial sequencing. By comparing this new genome to the existing D. melanogaster assembly, we created a structural variant map of unprecedented resolution and identified extensive genetic variation that has remained hidden until now. Many of these variants constitute candidates underlying phenotypic variation, including tandem duplications and a transposable element insertion that amplifies the expression of detoxification-related genes associated with nicotine resistance. The abundance of important genetic variation that still evades discovery highlights how crucial high-quality reference genomes are to deciphering phenotypes.


July 7, 2019  |  

Complete genome sequencing and genomic characterization of two Escherichia coli strains co-producing MCR-1 and NDM-1 from bloodstream infection.

We previously described the discovery of two Escherichia coli isolates (EC1002 and EC2474) co-harbouring mcr-1 and bla NDM-1 genes, which were recovered from bloodstream infection in China. More importantly, these antibiotic resistance genes were located on different plasmids and signaling the potential spread of pandrug-resistant bacteria. Here, the complete genome sequences of both isolates were determined using Pacbio RS II and Illumina HiSeq2000 systems. The genome of EC1002 consists of a 5,177,501 base pair chromosome and four circular plasmids, while the genome of EC2474 consists of a 5,013,813 base pair chromosome and three plasmids. The plasmid replicon type of pEC1002_NDM and pEC2474_NDM were identified as IncA/C2 and IncF, respectively. The genetic environment of bla NDM-1 in this study was similar to bla NDM-carrying plasmids detected in China, although the overall nucleotide identity and query coverage were variable. The plasmid replicon type of pEC1002_MCR and pEC2474_MCR were identified as IncI2 and IncHI2, respectively. Two different genetic strategies for mcr-1 gene spread were observed in this study and bla NDM-1 genes were also found transferred by two different mobile genetic elements in two plasmids. The findings of this study further support that the diversified transfer mechanisms of bla NDM-1 and mcr-1 present in Enterobacteriaceae.


July 7, 2019  |  

Trajectories and drivers of genome evolution in surface-associated marine Phaeobacter.

The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Mechanisms of adaptive divergence and speciation in Littorina saxatilis: Integrating knowledge from ecology and genetics with new data emerging from genomic studies

New opportunities to understand marine speciation and evolution of local adaptation come with genomic approaches and with the development of comprehensive model systems. The marine snail Littorina saxatilis is one example of a developing marine model for investigating genetic mechanisms of rapid divergence and evolution in natural systems. This species is strongly polymorphic and shows formation of local ecotypes throughout its distribution. Support is strong for primary (in situ) and parallel formation of reproductively semi-isolated ecotypes with contact zones between heterogeneous intertidal microhabitats. This makes this species an ideal organism for gaining new insights into the interplay of divergent selection, gene flow and genetic drift during local adaptation and speciation. A relatively well-resolved draft genome and a genetic map describing 17 linkage groups (“chromosomes”) are key tools for investigating the role of structural genomic variation, such as inversions, gene duplications and translocations. Whole genome re-sequencing of pools of individuals and the first comprehensive study of a contact zone contribute direct information on selection and barriers to gene flow present in specific regions of the genome. Linking selection at the phenotypic level to patterns obser ved in the genome is under way by quantitative trait loci mapping and annotation of candidate genes, while the role of single mutations on individual fitness will have to await development of gene manipulation tools. The features of the snail system facilitate the study of local adaptation and speciation and its genomic basis, but the underlying evolutionary processes are expected to be similar in other organisms, and hence this species is a useful model.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.