April 21, 2020  |  

Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies

Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from textquoteleftfinishedtextquoteright. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies.Results We employed three gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: six with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and three with new assemblies based on re-scaffolding or Pacific Biosciences long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: seven for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further seven with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi.Conclusions Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our comparisons show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.ADADSEQAGOAGOUTI-basedAGOUTIannotated genome optimization using transcriptome information toolALNalignment-basedCAMSAcomparative analysis and merging of scaffold assemblies toolDPdynamic programmingFISHfluorescence in situ hybridizationGAGOS-ASMGOS-ASMGene order scaffold assemblerKbpkilobasepairsMbpmegabasepairsOSORTHOSTITCHPacBioPacific BiosciencesPBPacBio-basedPHYphysical-mapping-basedRNAseqRNA sequencingQTLquantitative trait lociSYNsynteny-based.


April 21, 2020  |  

De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China.

The white poplar (Populus alba) is widely distributed in Central Asia and Europe. There are natural populations of white poplar in Irtysh River basin in China. It also can be cultivated and grown well in northern China. In this study, we sequenced the genome of P. alba by single-molecule real-time technology. De novo assembly of P. alba had a genome size of 415.99 Mb with a contig N50 of 1.18 Mb. A total of 32,963 protein-coding genes were identified. 45.16% of the genome was annotated as repetitive elements. Genome evolution analysis revealed that divergence between P. alba and Populus trichocarpa (black cottonwood) occurred ~5.0 Mya (3.0, 7.1). Fourfold synonymous third-codon transversion (4DTV) and synonymous substitution rate (ks) distributions supported the occurrence of the salicoid WGD event (~ 65 Mya). Twelve natural populations of P. alba in the Irtysh River basin in China were sequenced to explore the genetic diversity. Average pooled heterozygosity value of P. alba populations was 0.170±0.014, which was lower than that in Italy (0.271±0.051) and Hungary (0.264±0.054). Tajima’s D values showed a negative distribution, which might signify an excess of low frequency polymorphisms and a bottleneck with later expansion of P. alba populations examined.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.