Menu
June 1, 2021  |  

Sequencing and de novo assembly of the 17q21.31 disease associated region using long reads generated by Pacific Biosciences SMRT Sequencing technology.

Assessment of genome-wide variation revealed regions of the genome with complex, structurally diverse haplotypes that are insufficiently represented in the human reference genome. The 17q21.31 region is one of the most dynamic and complex regions of the human genome. Different haplotypes exist, in direct and inverted orientation, showing evidence of positive selection and predisposing to microdeletion associated with mental retardation. Sequencing of different haplotypes is extremely important to characterize the spectrum of structural variation at this locus. However, de novo assembly with second-generation sequencing reads is still problematic. Using PacBio technology we have sequenced and de novo assembled a tiling path of eight BAC clones (~1.6 Mb region) across this medically relevant region from the library of a hydatidiform mole. Complete hydatidiform moles arise from the fertilization of an enucleated egg from a single sperm and therefore carry a haploid complement of the human genome, eliminating allelic variation that may confound mapping and assembly. The PacBio RS system enables single molecule real time sequencing, featuring long reads and fast turnaround times. With deep sequencing, PacBio reads were able to generate a very uniform sequencing coverage with close to 100% coverage of most of the target interval regions covered. Due to long read lengths, the PacBio RS data could be accurately assembled.


June 1, 2021  |  

Targeted SMRT Sequencing and phasing using Roche NimbleGen’s SeqCap EZ enrichment

As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but are unable to haplotype these variants. Here we describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with Pacific Biosciences’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase regions. While the SeqCap EZ technology is typically used to capture 200 bp fragments, we demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the flanking intronic regions. When combined with the long reads of SMRT Sequencing, multi-kilobase regions of the human genome can be phased and variants detected in exons, introns and intergenic regions.


June 1, 2021  |  

“SMRTer Confirmation”: Scalable clinical read-through variant confirmation using the Pacific Biosciences SMRT Sequencing platform

Next-generation sequencing (NGS) has significantly improved the cost and turnaround time for diagnostic genetic tests. ACMG recommends variant confirmation by an orthogonal method, unless sufficiently high sensitivity and specificity can be demonstrated using NGS alone. Most NGS laboratories make extensive use of Sanger sequencing for secondary confirmation of single nucleotide variants (SNVs) and indels, representing a large fraction of the cost and time required to deliver high quality genetic testing data to clinicians and patients. Despite its established data quality, Sanger is not a high-throughput method by today’s standards from either an assay or analysis standpoint as it can involve manual review of Sanger traces and is not amenable to multiplexing. Toward a scalable solution for confirmation, Invitae has developed a fully automated and LIMS-tracked assay and informatics pipeline that utilizes the Pacific Biosciences SMRT sequencing platform. Invitae’s pipeline generates PCR amplicons that encompass the variant(s) of interest, which are converted to closed DNA structures (SMRTbells) and sequenced in pools of 96 per SMRTcell. Each amplicon is appended with a 16nt barcode that encodes the patient and variant IDs. Per-sample de-multiplexing, alignment, variant calling, and confirmation resolution are handled via an automated pipeline. The confirmation process was validated by analyzing 243 clinical SNVs and indels in parallel with the gold standard Sanger sequencing method. Amplicons were sequenced and analyzed in technical replicates to demonstrate reproducibility. In this study, the PacBio-based confirmation pipeline demonstrated high reproducibility (97.5%), and outperformed Sanger in the fraction of primary NGS variants confirmed (PacBio = 93.4% and 94.7% confirmed across two replicates, Sanger = 84.8%) while having 100% concordance of confirmation status among overlapping confirmation calls.


June 1, 2021  |  

No-amp targeted SMRT sequencing using a CRISPR-Cas9 enrichment method

Targeted sequencing of genomic DNA requires an enrichment method to generate detectable amounts of sequencing products. Genomic regions with extreme composition bias and repetitive sequences can pose a significant enrichment challenge. Many genetic diseases caused by repeat element expansions are representative of these challenging enrichment targets. PCR amplification, used either alone or in combination with a hybridization capture method, is a common approach for target enrichment. While PCR amplification can be used successfully with genomic regions of moderate to high complexity, it is the low-complexity regions and regions containing repetitive elements sometimes of indeterminate lengths due to repeat expansions that can lead to poor or failed PCR enrichment. We have developed an enrichment method for targeted SMRT Sequencing on the PacBio Sequel System using the CRISPR-Cas9 system that requires no PCR amplification. Briefly, a preformed SMRTbell library containing the target region of interest is cleaved with Cas9 through direct interaction with a sequence-specific guide RNA. After ligation with new poly(A) hairpin adapters, the asymmetric SMRTbell templates are enriched by magnetic bead separation. This method, paired with SMRT Sequencing’s long reads, high consensus accuracy, and uniform coverage, allows sequencing of genomic regions regardless of challenging sequence context that cannot be investigated with other technologies. The method is amenable to analyzing multiple samples and/or targets in a single reaction. In addition, this method also preserves epigenetic modifications allowing for the detection and characterization of DNA methylation which has been shown to be a key factor in the disease mechanism for some repeat expansion diseases. Here we present results of our latest No-Amp Targeted Sequencing procedure applied to the characterization of CAG triplet repeat expansions in the HTT gene responsible for Huntington’s Disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.