Menu
July 7, 2019  |  

Complete genome sequence of Sulfitobacter sp. strain D7, a virulent bacterium isolated from an Emiliania huxleyi algal bloom in the North Atlantic.

A Rhodobacterales bacterium, Sulfitobacter sp. strain D7, was isolated from an Emiliania huxleyi bloom in the North Atlantic and has been shown to act as a pathogen and induce cell death of E. huxleyi during lab coculturing. We report here its complete genome sequence comprising one chromosome and five low-copy-number plasmids.


July 7, 2019  |  

BELLA: Berkeley Efficient Long-Read to Long-Read Aligner and Overlapper

De novo assembly is the process of reconstructing genomes from DNA fragments (reads), which may contain redundancy and errors. Longer reads simplify assembly and improve contiguity of the output, but current long-read technologies come with high error rates. A crucial step of de novo genome assembly for long reads consists of finding overlapping reads. We present Berkeley Long-Read to Long-Read Aligner and Overlapper (BELLA), which implement a novel approach to compute overlaps using Sparse Generalized Matrix Multiplication (SpGEMM). We present a probabilistic model which demonstrates the soundness of using short, fixed length k-mers to detect overlaps, avoiding expensive pairwise alignment of all reads against all others. We then introduce a notion of reliable k-mers based on our probabilistic model. The use of reliable k-mers eliminates both the k-mer set explosion that would otherwise happen with highly erroneous reads and the spurious overlaps due to k-mers originating from repetitive regions. Finally, we present a new method to separate true alignments from false positives depending on the alignment score. Using this methodology, which is employed in BELLAtextquoterights precise mode, the probability of false positives drops exponentially as the length of overlap between sequences increases. On simulated data, BELLA achieves an average of 2.26% higher recall than state-of-the-art tools in its sensitive mode and 18.90% higher precision than state-of-the-art tools in its precise mode, while being performance competitive.


July 7, 2019  |  

Complete genome sequence of the polymyxin E (colistin)-producing Paenibacillus sp. strain B-LR.

Paenibacillus bacteria are recovered from varied niches, including human lung, rhizosphere, marine sediments, and hemolymph. Paenibacilli can have plant growth-promoting activities and be antibiotic producers. They can produce exopolysaccharides and enzymes of industrial interest. Illumina and PacBio reads were used to produce a complete genome sequence of the colistin producer Paenibacillus sp. strain B-LR.


July 7, 2019  |  

Complete genome sequence of the Arcobacter halophilus type strain CCUG 53805.

Many Arcobacter spp. are free living and are routinely recovered from marine environments. Arcobacter halophilus was isolated from hypersaline lagoon water in the Hawaiian islands, and it was demonstrated to be an obligate halophile. This study describes the complete whole-genome sequence of the A. halophilus type strain, CCUG 53805 (= LA31BT = ATCC BAA-1022T).


July 7, 2019  |  

Hardwood tree genomics: Unlocking woody plant biology.

Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative (“evo-devo”) approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.


July 7, 2019  |  

De novo genome assembly of the olive fruit fly (Bactrocera oleae) developed through a combination of linked-reads and long-read technologies

Long-read sequencing has greatly contributed to the generation of high quality assemblies, albeit at a high cost. It is also not always clear how to combine sequencing platforms. We sequenced the genome of the olive fruit fly (Bactrocera oleae), the most important pest in the olive fruits agribusiness industry, using Illumina short-reads, mate-pairs, 10x Genomics linked-reads, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The 10x linked-reads assembly gave the most contiguous assembly with an N50 of 2.16 Mb. Scaffolding the linked-reads assembly using long-reads from ONT gave a more contiguous assembly with scaffold N50 of 4.59 Mb. We also present the most extensive transcriptome datasets of the olive fly derived from different tissues and stages of development. Finally, we used the Chromosome Quotient method to identify Y-chromosome scaffolds and show that the long-reads based assembly generates very highly contiguous Y-chromosome assembly.


July 7, 2019  |  

The Draft Genome of the MD-2 Pineapple

The main challenge in assembling plant genome is its ploidy level, repeats content, and polymorphism. The second-generation sequencing delivered the throughput and the accuracy that is crucial to whole-genome sequencing but insufficient and remained challenging for some plant species. It is known that genomes produced by next-gen- eration sequencing produced small contigs that would inflate the number of annotated genes (Varshney et al. 2011) and missed on the transposable elements that are abun- dant in plant genome due to their repetitive nature (Michael and Jackson 2013).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.