X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, November 12, 2020

Application Brief: Structural variant detection using whole genome sequencing – Best Practices

With the Sequel II System powered by Single Molecule, Real-Time (SMRT) Sequencing technology and SMRT Link v8.0, you can affordably and effectively detect structural variants (SVs), copy number variants, and large indels ranging in size from tens to thousands of base pairs. PacBio long-read whole genome sequencing comprehensively resolves variants in an individual with high precision and recall. For population genetics and pedigree studies, joint calling powers rapid discovery of common variants within a sample cohort.

Read More »

Thursday, November 12, 2020

Informational Guide: What’s the value of sequencing full-length RNA transcripts?

The study of genomics has revolutionized our understanding of science, but the field of transcriptomics grew with the need to explore the functional impacts of genetic variation. While different tissues in an organism may share the same genomic DNA, they can differ greatly in what regions are transcribed into RNA and in their patterns of RNA processing. By reviewing the history of transcriptomics, we can see the advantages of RNA sequencing using a full-length transcript approach become clearer.

Read More »

Thursday, November 12, 2020

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.

Read More »

Sunday, October 25, 2020

ASM PacBio Workshop: Genomics in food security – 100k pathogen genome project

UC Davis’s Bart Weimer describes foodborne pathogens and their proclivity for rapid genome rearrangement. The 100K Pathogen Genome Project he leads is using PacBio long-read sequencing to close genomes and analyze methylation; Weimer reports that his team has already discovered new epigenetic modifications in Salmonella and Listeria with the technology.

Read More »

Sunday, October 25, 2020

ASHG Conference: Comprehensive genome and transcriptome structural analysis of a breast cancer cell line using PacBio long read sequencing

During this presentation from ASHG 2015, Maria Nattestad of Cold Spring Harbor Laboratory described the study of a Her2-amplified breast cancer cell line using long-read sequencing from PacBio. With reads as long as 71 kb, she was able to characterize extensive and complex rearrangements and found more than 11,000 structural variants. She also used the Iso-Seq method to find gene fusions, including some novel ones.

Read More »

Sunday, October 25, 2020

PAG PacBio Workshop: A-maize-ing time for plant science – SMRT Sequencing of the maize genome and transcriptome

Doreen Ware introduces her team’s new assembly of maize, built with PacBio long-read sequencing and genome maps from BioNano Genomics. With a contig N50 of nearly 10 Mb and more complete information than any previous assembly, Ware says, “This is just an amazing time to be a plant scientist.” Her presentation includes a number of highlights from the new assembly, which may help crop improvement efforts for maize.

Read More »

Sunday, October 25, 2020

ASHG PacBio Workshop: Towards precision medicine

Euan Ashley from Stanford University started with the premise that while current efforts in the field of genomics medicine address 30% of patient cases, there’s a need for new approaches to make sense of the remaining 70%. Toward that end, he said that accurately calling structural variants is a major need. In one translational research example, Ashley said that SMRT Sequencing with the Sequel System allowed his team to identify six potentially causative genes in an individual with complex and varied symptoms; one gene was associated with Carney syndrome, which was a match for the person’s physiology and was later…

Read More »

Sunday, October 25, 2020

AGBT Virtual Poster: Using the PacBio Iso-Seq method to search for novel colorectal cancer biomarkers

Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.

Read More »

Sunday, October 25, 2020

PAG PacBio Workshop: Genome assembly and molecular genetics of the dengue, yellow fever, and zika vector Aedes aegypti

In this PAG 2017 presentation, Ben Matthews describes a new genome assembly for Aedes aegypti, the mosquito responsible for spreading Zika virus, yellow fever, and other infectious diseases. By using PacBio long-read sequencing, scientists produced an assembly that is much more complete and contiguous than a previous assembly; 7,500 transcripts map to the new contigs but not to the old assembly. The genome is important for designing guide RNAs for CRISPR, understanding resistance to mosquito repellants, and much more.

Read More »

Sunday, October 25, 2020

Video: Using the Integrative Genomics Viewer (IGV) to visualize PacBio long-read SMRT Sequencing data

In this video, PacBio scientists present ongoing improvements to the Integrative Genomics Viewer (IGV) and demonstrate how multiple new features improve visualization support for PacBio long-read sequencing data. The video describes these recent updates which include; quick consensus accuracy mode to hide random single-molecule errors, direct phasing of haplotypes using long-read evidence, and visual annotation of insertions and deletions relative to the reference with enumeration of gap size for individual reads. These new features are available now in the development version of IGV, which can be found at http://software.broadinstitute.org/software/igv/download_snapshot. The Sequel sequencing data used in this demonstration is also publicly…

Read More »

Sunday, October 25, 2020

Webinar: Addressing “NGS Dead Zones” with third generation PacBio sequencing

SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.

Read More »

Sunday, October 25, 2020

Webinar: Assembling high-quality human reference genomes for global populations

This webinar highlights global initiatives currently underway to use Single Molecule, Real-Time (SMRT) Sequencing to de novo assemble genomes of individuals representing multiple ethnic populations, thereby extending the diversity of available human reference genomes. In their presentations, Tina Graves-Lindsay from Washington University and Adam Ameur from Uppsala University spoke about diploid assemblies, discovering novel sequence and improving diversity of the current human reference genome. Finally, Paul Peluso of PacBio presented data from the recent effort to sequence a Puerto Rican genome and shared a SMRT Sequencing technology roadmap showing the next several upgrades for the Sequel System.

Read More »

1 2 3 5

Subscribe for blog updates:

Archives