fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

SiLiCO: A simulator of long read sequencing in PacBio and Oxford Nanopore

Long read sequencing platforms, which include the widely used Pacific Biosciences (PacBio) platform and the emerging Oxford Nanopore platform, aim to produce sequence fragments in excess of 15-20 kilobases, and have proved advantageous in the identification of structural variants and easing genome assembly. However, long read sequencing remains relatively expensive and error prone, and failed sequencing runs represent a significant problem for genomics core facilities. To quantitatively assess the underlying mechanics of sequencing failure, it is essential to have highly re-producible and controllable reference data sets to which sequencing results can be compared. Here, we present SiLiCO, the first in…

Read More »

Sunday, July 7, 2019

Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes.

Entomopathogenic fungi such as Beauveria bassiana are promising biological agents for control of malaria mosquitoes. Indeed, infection with B. bassiana reduces the lifespan of mosquitoes in the laboratory and in the field. Natural isolates of B. bassiana show up to 10-fold differences in virulence between the most and the least virulent isolate. In this study, we sequenced the genomes of five isolates representing the extremes of low/high virulence and three RNA libraries, and applied a genome comparison approach to uncover genetic mechanisms underpinning virulence.A high-quality, near-complete genome assembly was achieved for the highly virulent isolate Bb8028, which was compared to…

Read More »

Sunday, July 7, 2019

The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance.

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly…

Read More »

Sunday, July 7, 2019

Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D.

Completion of eukaryal genomes can be difficult task with the highly repetitive sequences along the chromosomes and short read lengths of second-generation sequencing. Saccharomyces cerevisiae strain CEN.PK113-7D, widely used as a model organism and a cell factory, was selected for this study to demonstrate the superior capability of very long sequence reads for de novo genome assembly. We generated long reads using two common third-generation sequencing technologies (Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)) and used short reads obtained using Illumina sequencing for error correction. Assembly of the reads derived from all three technologies resulted in complete sequences for…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil.

We report here the complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil in eastern Massachusetts. We assembled PacBio reads into a single closed contig with 132× mean coverage and then polished this contig using Illumina MiSeq reads, yielding a 6,890,566-bp sequence with 61.1% GC content. Copyright © 2018 Cerra et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Escherichia coli ML35.

We report here the complete genome sequence of Escherichia coli strain ML35. We assembled PacBio reads into a single closed contig with 169× mean coverage and then polished this contig using Illumina MiSeq reads, yielding a 4,918,774-bp sequence with 50.8% GC content. Copyright © 2018 Casale et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of a ciprofloxacin-resistant Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 strain, PU131, isolated from a human patient in Washington State.

Strains of the ciprofloxacin-resistant (Cipr) Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 (ST198) have rapidly and extensively disseminated globally to become a major food safety and public health concern. Here, we report the complete genome sequence of a CiprS. Kentucky ST198 strain, PU131, isolated from a human patient in Washington State (USA).

Read More »

Sunday, July 7, 2019

Complete genome sequence of Bacillus licheniformis BL-010.

The biodegradation of Aflatoxin B1 (AFB1) is an industry of increasing importance. Bacillus licheniformis BL-010 was isolated from the aflatoxin contaminated corn feed storage, and was shown to degrade AFB1 efficiently. Here we present the complete genome sequence of BL-010, the genome comprises 4,287,714 bp in a circular chromosome with a GC content of 46.12% and contains genes encoding AFB1 degrading enzymes. The genome sequence displayed that this strain contains genes involved in production of laccase, aromatic ring-opening dioxygenase which could detoxify AFB1. Complete genome sequence of the strain BL-010 can further provide the genomic basis for the biotechnological application…

Read More »

Sunday, July 7, 2019

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes.

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We…

Read More »

Sunday, July 7, 2019

Complete genome sequence of herpes simplex virus 2 strain 333.

Herpes simplex virus 2, or human herpesvirus 2, is a ubiquitous human pathogen that causes genital ulcerations and establishes latency in sacral root ganglia. We fully sequenced and manually curated the viral genome sequence of herpes simplex virus 2, strain 333 using Pacific Biosciences and Illumina sequencing technologies.

Read More »

Sunday, July 7, 2019

Complete genome of the multidrug-resistant Escherichia coli strain KBN10P04869 isolated from a patient with acute myeloid leukemia

Recently, we isolated a multidrug-resistant Escherichia coli strain KBN10P04869 from a patient with acute myeloid leukemia. We report the complete genome of this strain which consists of 5,104,264 bp with 4,457 protein-coding genes, 88 tRNAs, and 22 rRNAs, and the co-occurrence of multidrug- resistant genes including bla CMY-2, bla TEM-1, bla CTX-M-15, bla NDM-5, and blaOXA-18.

Read More »

1 7 8 9

Subscribe for blog updates:

Archives