Menu
September 22, 2019  |  

Genomic characterization of a B chromosome in Lake Malawi cichlid fishes.

B chromosomes (Bs) were discovered a century ago, and since then, most studies have focused on describing their distribution and abundance using traditional cytogenetics. Only recently have attempts been made to understand their structure and evolution at the level of DNA sequence. Many questions regarding the origin, structure, function, and evolution of B chromosomes remain unanswered. Here, we identify B chromosome sequences from several species of cichlid fish from Lake Malawi by examining the ratios of DNA sequence coverage in individuals with or without B chromosomes. We examined the efficiency of this method, and compared results using both Illumina and PacBio sequence data. The B chromosome sequences detected in 13 individuals from 7 species were compared to assess the rates of sequence replacement. B-specific sequence common to at least 12 of the 13 datasets were identified as the “Core” B chromosome. The location of B sequence homologs throughout the genome provides further support for theories of B chromosome evolution. Finally, we identified genes and gene fragments located on the B chromosome, some of which may regulate the segregation and maintenance of the B chromosome.


September 22, 2019  |  

N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses.

N6-Methyladenine (6mA) DNA methylation has recently been implicated as a potential new epigenetic marker in eukaryotes, including the dicot model Arabidopsis thaliana. However, the conservation and divergence of 6mA distribution patterns and functions in plants remain elusive. Here we report high-quality 6mA methylomes at single-nucleotide resolution in rice based on substantially improved genome sequences of two rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica). Analysis of 6mA genomic distribution and its association with transcription suggest that 6mA distribution and function is rather conserved between rice and Arabidopsis. We found that 6mA levels are positively correlated with the expression of key stress-related genes, which may be responsible for the difference in stress tolerance between Nip and 93-11. Moreover, we showed that mutations in DDM1 cause defects in plant growth and decreased 6mA level. Our results reveal that 6mA is a conserved DNA modification that is positively associated with gene expression and contributes to key agronomic traits in plants. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

The plasmid-encoded transcription factor ArdK contributes to the repression of the IMP-6 metallo-ß-lactamase gene blaIMP-6, leading to a carbapenem-susceptible phenotype in the blaIMP-6-positive Escherichia coli strain A56-1S.

Carbapenemase-producing Enterobacteriaceae (CPE) are a global concern because these bacteria are resistant to almost all ß-lactams. Horizontal interspecies gene transfer via plasmid conjugation has increased the global dissemination of CPE. Recently, an Enterobacteriaceae strain positive for carbapenemase gene but showing a carbapenem-susceptible phenotype was identified, suggesting that these susceptible strains may be challenging to detect solely via antimicrobial susceptibility tests without molecular analysis. Here, we isolated a blaIMP-6 carbapenemase-gene positive but imipenem- and meropenem-susceptible Escherichia coli (ISMS-E) strain A56-1S (imipenem and meropenem minimum inhibitory concentration, = 0.125 mg/L), from a human urine specimen in Japan. A56-1S was carbapenemase negative by the Carba NP test, suggesting that IMP-6 production was low or undetectable. Thus, to characterize the mechanism of this phenotype, a meropenem-resistant E. coli A56-1R strain was obtained using meropenem-selection. A56-1R was positive for carbapenemase production by the Carba NP test, and blaIMP-6 transcription in A56-1R was 53-fold higher than in A56-1S, indicating that blaIMP-6 in A56-1S is negatively regulated at the transcriptional level. Comparative genomic analysis between the two strains revealed that the alleviation of restriction of DNA (ardK) gene encoding a putative transcription factor is disrupted by the IS26 insertion in A56-1R. A cotransformation assay of ardK and the regulatory element upstream of blaIMP-6 showed repression of blaIMP-6 transcription, indicating that ArdK negatively modulates blaIMP-6 transcription. ArdK binding and affinity assays demonstrated that ArdK directly binds to the regulatory element upstream of blaIMP-6 with dissociation constant values comparable to those of general transcription factors. The IMP-6 carbapenemase showed low hydrolytic activity against imipenem, resulting in an imipenem-susceptible and meropenem-resistant (ISMR) phenotype (previously reported as a stealth phenotype). However, the low expression of IMP-6 in the A56-1S strain could be a typical characteristic of ISMS-E due to gene repression, indicating that conventional antimicrobial susceptibility tests might be unable to detect such strains even when using both imipenem and meropenem. Bacteria that exhibit the ISMS phenotype could play a potential role as undetectable reservoirs and might facilitate gene transfer to other organisms while avoiding detection.


September 22, 2019  |  

First draft genome for red sea bream of family Sparidae.

Reference genomes for all organisms on earth are now attainable owing to advances in genome sequencing technologies (Goodwin et al., 2016). Generally, species that contribute considerably to the economy or human welfare are sequenced and are considered more important than others. Furthermore, coastal indigenous people mainly depend on marine species for their food sources, which has resulted in the extinction of several marine species (Cisneros-Montemayor et al., 2016). Of these, an extinction risk assessment of marine fishes, mainly for sea breams (Family: Sparidae), has recently been conducted by way of a global extinction risk assessment from the dataset of the International Union for Conservation of Nature’s Red List Process, which mentions that around 25 species are threatened/near-threatened according to their body weight (Comeros-Raynal et al., 2016). Another report clearly showed the benefit of worldwide aquaculture production, which contributed to 47% of total seafood production, and also highlighted the over-fishing of sea breams (FAO, 2018). The Republic of Korea is the fourth largest seafood producer in the world, producing 3.3 million tons in 2015 and exporting seafood worth $1.6 billion in 2016; therefore, aquaculture- associated research is fundamental for Korea. In the present study, the red sea bream (Pagrus major), which belongs to the family Sparidae, which comprises 35 genera, 132 species, and 10 subspecies (de la Herran et al., 2001; NCBI, 2018), was assessed.


September 22, 2019  |  

Relationship between Alzheimer’s disease-associated SNPs within the CLU gene, local DNA methylation and episodic verbal memory in healthy and schizophrenia subjects.

Genetic variation may impact on local DNA methylation patterns. Therefore, information about allele-specific DNA methylation (ASM) within disease-related loci has been proposed to be useful for the interpretation of GWAS results. To explore mechanisms that may underlie associations between Alzheimer’s disease (AD) and schizophrenia risk CLU gene and verbal memory, one of the most affected cognitive domains in both conditions, we studied DNA methylation in a region between AD-associated SNPs rs9331888 and rs9331896 in 72 healthy individuals and 73 schizophrenia patients. Using single-molecule real-time bisulfite sequencing we assessed the haplotype-dependent ASM in this region. We then investigated whether its methylation could influence episodic verbal memory measured with the Rey Auditory Verbal Learning Test in these two cohorts. The region showed a complex methylation pattern, which was similar in healthy and schizophrenia individuals and unrelated to haplotypes. The pattern predicted memory scores in controls. The results suggest that epigenetic modifications within the CLU locus may play a role in memory variation, independent of ASM. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance.

The World Health Organization reports that antibiotic-resistant pathogens represent an imminent global health disaster for the 21st century. Gram-positive superbugs threaten to breach last-line antibiotic treatment, and the pharmaceutical industry antibiotic development pipeline is waning. Here we report the synergy between ionophore-induced physiological stress in Gram-positive bacteria and antibiotic treatment. PBT2 is a safe-for-human-use zinc ionophore that has progressed to phase 2 clinical trials for Alzheimer’s and Huntington’s disease treatment. In combination with zinc, PBT2 exhibits antibacterial activity and disrupts cellular homeostasis in erythromycin-resistant group A Streptococcus (GAS), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). We were unable to select for mutants resistant to PBT2-zinc treatment. While ineffective alone against resistant bacteria, several clinically relevant antibiotics act synergistically with PBT2-zinc to enhance killing of these Gram-positive pathogens. These data represent a new paradigm whereby disruption of bacterial metal homeostasis reverses antibiotic-resistant phenotypes in a number of priority human bacterial pathogens.IMPORTANCE The rise of bacterial antibiotic resistance coupled with a reduction in new antibiotic development has placed significant burdens on global health care. Resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus are leading causes of community- and hospital-acquired infection and present a significant clinical challenge. These pathogens have acquired resistance to broad classes of antimicrobials. Furthermore, Streptococcus pyogenes, a significant disease agent among Indigenous Australians, has now acquired resistance to several antibiotic classes. With a rise in antibiotic resistance and reduction in new antibiotic discovery, it is imperative to investigate alternative therapeutic regimens that complement the use of current antibiotic treatment strategies. As stated by the WHO Director-General, “On current trends, common diseases may become untreatable. Doctors facing patients will have to say, Sorry, there is nothing I can do for you.” Copyright © 2018 Bohlmann et al.


September 22, 2019  |  

Sex chromosome evolution via two genes

The origin of sex chromosomes has been hypothesized to involve the linkage of factors with antagonistic effects on male and female function. Garden asparagus (Asparagus officinalis L.) is an ideal species to test this hypothesis, as the X and Y chromosomes are cytologically homomorphic and recently evolved from an ancestral autosome pair in association with a shift from hermaphroditism to dioecy. Mutagenesis screens paired with single-molecule fluorescence in situ hybridization (smFISH) directly implicate Y-specific genes that respectively suppress female organ development and are necessary for male gametophyte development. Comparison of contiguous X and Y chromosome shows that loss of recombination between the genes suppressing female function (SUPPRESSOR OF FEMALE FUNCTION, SOFF) and promoting male function (TAPETAL DEVELOPMENT AND FUNCTION 1, aspTDF1) is due to hemizygosity. We also experimentally demonstrate the function of aspTDF1. These finding provide direct evidence that sex chromosomes can evolve from autosomes via two sex determination genes: a dominant suppressor of femaleness and a promoter of maleness.


September 21, 2019  |  

Complete chloroplast genome sequence of the red silk cotton tree (Bombax ceiba)

Bombax ceiba L. is a beautiful and deciduous tree with great ecological and economic importance. The third generation sequencing of chloroplast genome of B. ceiba was conducted on the PacBio sequencing platform (Pacific Biosciences). The complete chloroplast genome was 158,997?bp, which contains a large single-copy (LSC) region (89,021?bp), a small single-copy (SSC) region (21,110?bp), and two inverted repeats (IRs) (24,433?bp). In total, 116 genes were annotated, including 81 protein-coding genes, eight rRNA genes, and 27 tRNA genes. The phylogenetic tree showed that B. ceiba was closely clustered with one clade of Malvaceae.


September 21, 2019  |  

The complete mitochondrial genome of Bombax ceiba

Bombax ceiba is a beautiful and deciduous tree with important economic and ecological values. Here, we sequenced the intact mitochondrial genome (mitogenome) of B. ceiba on the PacBio sequencing platform (Pacific Biosciences, Menlo Park, CA). The mitogenome is 594,390bp and is comprised of 35 protein-coding genes, two rRNA genes, and 25 tRNA genes. The phylogeny analysis suggested that B. ceiba was closely clustered with the genus Gossypium.


September 21, 2019  |  

Characterization of multi-drug resistant Enterococcus faecalis isolated from cephalic recording chambers in research macaques (Macaca spp.).

Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6′)-aph(2″), aph(3′)-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.


September 21, 2019  |  

Decreased fitness and virulence in ST10 Escherichia coli harboring blaNDM-5 and mcr-1 against a ST4981 strain with blaNDM-5.

Although coexistence of blaNDM-5 and mcr-1 in Escherichia coli has been reported, little is known about the fitness and virulence of such strains. Three carbapenem-resistant Escherichia coli (GZ1, GZ2, and GZ3) successively isolated from one patient in 2015 were investigated for microbiological fitness and virulence. GZ1 and GZ2 were also resistant to colistin. To verify the association between plasmids and fitness, growth kinetics of the transconjugants were performed. We also analyzed genomic sequences of GZ2 and GZ3 using PacBio sequencing. GZ1 and GZ2 (ST10) co-harbored blaNDM-5 and mcr-1, while GZ3 (ST4981) carried only blaNDM-5. GZ3 demonstrated significantly more rapid growth (P < 0.001) and overgrew GZ2 with a competitive index of 1.0157 (4 h) and 2.5207 (24 h). Increased resistance to serum killing and mice mortality was also identified in GZ3. While GZ2 had four plasmids (IncI2, IncX3, IncHI2, IncFII), GZ3 possessed one plasmid (IncFII). The genetic contexts of blaNDM-5 in GZ2 and GZ3 were identical but inserted into different backbones, IncX3 (102,512 bp) and IncFII (91,451 bp), respectively. The growth was not statistically different between the transconjugants with mcr-1 or blaNDM-5 plasmid and recipient (P = 0.6238). Whole genome sequence analysis revealed that 28 virulence genes were specific to GZ3, potentially contributing to increased virulence of GZ3. Decreased fitness and virulence in a mcr-1 and blaNDM-5 co-harboring ST10 E. coli was found alongside a ST4981 strain with only blaNDM-5. Acquisition of mcr-1 or blaNDM-5 plasmid did not lead to considerable fitness costs, indicating the potential for dissemination of mcr-1 and blaNDM-5 in Enterobacteriaceae.


September 21, 2019  |  

A distinct and genetically diverse lineage of the hybrid fungal pathogen Verticillium longisporum population causes stem striping in British oilseed rape.

Population genetic structures illustrate evolutionary trajectories of organisms adapting to differential environmental conditions. Verticillium stem striping disease on oilseed rape was mainly observed in continental Europe, but has recently emerged in the United Kingdom. The disease is caused by the hybrid fungal species Verticillium longisporum that originates from at least three separate hybridization events, yet hybrids between Verticillium progenitor species A1 and D1 are mainly responsible for Verticillium stem striping. We reveal a hitherto un-described dichotomy within V. longisporum lineage A1/D1 that correlates with the geographic distribution of the isolates with an ‘A1/D1 West’ and an ‘A1/D1 East’ cluster. Genome comparison between representatives of the A1/D1 West and East clusters excluded population distinctiveness through separate hybridization events. Remarkably, the A1/D1 West population that is genetically more diverse than the entire A1/D1 East cluster caused the sudden emergence of Verticillium stem striping in the UK, whereas in continental Europe Verticillium stem striping is predominantly caused by the more genetically uniform A1/D1 East population. The observed genetic diversity of the A1/D1 West population argues against a recent introduction of the pathogen into the UK, but rather suggests that the pathogen previously established in the UK and remained latent or unnoticed as oilseed rape pathogen until recently.© 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


September 21, 2019  |  

PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family.

Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the ‘MaHPIC Pk genome sequence’, includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.


September 21, 2019  |  

Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae)

The process of speciation involves whole genome differentiation by overcoming gene flow between diverging populations. We have ample knowledge which evolutionary forces may cause genomic differentiation, and several speciation models have been proposed to explain the transition from genetic to genomic differentiation. However, it is still unclear what are critical conditions enabling genomic differentiation in nature. The Fall armyworm, Spodoptera frugiperda, is observed as two sympatric strains that have different host-plant ranges, suggesting the possibility of ecological divergent selection. In our previous study, we observed that these two strains show genetic differentiation across the whole genome with an unprecedentedly low extent, suggesting the possibility that whole genome sequences started to be differentiated between the strains. In this study, we analyzed whole genome sequences from these two strains from Mississippi to identify critical evolutionary factors for genomic differentiation. The genomic Fst is low (0.017) while 91.3% of 10kb windows have Fst greater than 0, suggesting genome-wide differentiation with a low extent. We identified nearly 400 outliers of genetic differentiation between strains, and found that physical linkage among these outliers is not a primary cause of genomic differentiation. Fst is not significantly correlated with gene density, a proxy for the strength of selection, suggesting that a genomic reduction in migration rate dominates the extent of local genetic differentiation. Our analyses reveal that divergent selection alone is sufficient to generate genomic differentiation, and any following diversifying factors may increase the level of genetic differentiation between diverging strains in the process of speciation.


September 21, 2019  |  

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.

Long-read, single-molecule real-time (SMRT) sequencing is routinely used to finish microbial genomes, but available assembly methods have not scaled well to larger genomes. We introduce the MinHash Alignment Process (MHAP) for overlapping noisy, long reads using probabilistic, locality-sensitive hashing. Integrating MHAP with the Celera Assembler enabled reference-grade de novo assemblies of Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster and a human hydatidiform mole cell line (CHM1) from SMRT sequencing. The resulting assemblies are highly continuous, include fully resolved chromosome arms and close persistent gaps in these reference genomes. Our assembly of D. melanogaster revealed previously unknown heterochromatic and telomeric transition sequences, and we assembled low-complexity sequences from CHM1 that fill gaps in the human GRCh38 reference. Using MHAP and the Celera Assembler, single-molecule sequencing can produce de novo near-complete eukaryotic assemblies that are 99.99% accurate when compared with available reference genomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.