X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 27, 2020

Application Note: Targeted sequencing and chromosomal haplotype assembly using Cergentis TLA technology with SMRT Sequencing

The Targeted Locus Amplification (TLA) Technology from Cergentis enables the targeted, hypothesis-neutral, amplification of any genomic locus of interest over 50 kb using just one primer pair complementary to a short locus-specific sequence. TLA is a strategy to selectively amplify complete loci on the basis of crosslinking physically proximal sequences. Unlike other targeted sequencing methods, TLA works without prior detailed locus information, as one primer pair is sufficient to amplify tens to hundreds of kilobases of DNA surrounding that locus. In a separate application of TLA, the unamplified template can be used for genome-wide phasing and assembly. TLA enables targeted…

Read More »

Wednesday, May 13, 2020

PacBio Workshop: Understanding the biology of genomes with HiFi sequencing

The utility of new highly accurate long reads, or HiFi reads, was first demonstrated for calling all variant types in human genomes. It has since been shown that HiFi reads can be used to generate contiguous, complete, and accurate human genomes, even in repeat structures such as centromeres and telomeres. In this virtual workshop scientists from PacBio as well as Tina Graves-Lindsay from the McDonnell Genome Institute at Washington University share the many improvements we’ve made to HiFi sequencing in the past year, tools that take advantage of HiFi data for variant detection and assembly, and examples in numerous genomics…

Read More »

Monday, May 4, 2020

Webinar: Long HiFi reads for high-quality genome assemblies

In this LabRoots webinar, Jonas Korlach the CSO of PacBio provides an introduction to PacBio HiFi sequence reads, which are both long (up to 25 kb currently) and accurate (>99%) at the individual single-molecule sequence read level andhave allowed for advances in de novo genome assemblies. Korlach reviews the characteristics of HiFi read data obtained with the Sequel II System, followed by examples of high-quality genome assemblies for human, plant and animal genomes including the different aspects of evaluating genome assemblies (contiguity, accuracy, completeness and allelic phasing) and illustrates their high quality by examples of resolving centromeres, telomeres, segmental duplications…

Read More »

Tuesday, April 21, 2020

An improved pig reference genome sequence to enable pig genetics and genomics research

The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model with high anatomical and immunological similarity to humans. The draft reference genome (Sscrofa10.2) represented a purebred female pig from a commercial pork production breed (Duroc), and was established using older clone-based sequencing methods. The Sscrofa10.2 assembly was incomplete and unresolved redundancies, short range order and orientation errors and associated misassembled genes limited its utility. We present two highly contiguous chromosome-level genome assemblies created with more recent long read technologies and a whole genome shotgun strategy, one for the same Duroc female (Sscrofa11.1) and…

Read More »

Tuesday, April 21, 2020

Updated assembly resource of Phytophthora ramorum Pr102 isolate incorporating long reads from PacBio sequencing.

The NA1 clonal lineage of Phytophthora ramorum is responsible for Sudden Oak Death, an epidemic that has devastated California’s coastal forest ecosystems. An NA1 isolate Pr102 derived from coast live oak in California was previously sequenced and reported with 65 Mb assembly containing 12 Mb gaps in 2576 scaffolds. Here we report an improved 70 Mb genome in 1512 scaffolds with 6752 bp gaps after incorporating PacBio P5-C3 longreads. This assembly contains 19494 gene models (average gene length 2515 bp) compared to 16134 genes (average gene length of 1673 bp) in the previous version. We predicted 29 new RXLRs and…

Read More »

Tuesday, April 21, 2020

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently…

Read More »

Tuesday, April 21, 2020

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow…

Read More »

Tuesday, April 21, 2020

Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data.

Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed…

Read More »

Tuesday, April 21, 2020

Characterizing the major structural variant alleles of the human genome.

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number…

Read More »

Tuesday, April 21, 2020

Physiological properties and genetic analysis related to exopolysaccharide (EPS) production in the fresh-water unicellular cyanobacterium Aphanothece sacrum (Suizenji Nori).

The clonal strains, phycoerythrin(PE)-rich- and PE-poor strains, of the unicellular, fresh water cyanobacterium Aphanothece sacrum (Suringar) Okada (Suizenji Nori, in Japanese) were isolated from traditional open-air aquafarms in Japan. A. sacrum appeared to be oligotrophic on the basis of its growth characteristics. The optimum temperature for growth was around 20°C. Maximum growth and biomass increase at 20°C was obtained under light intensities between 40 to 80 µmol m-2 s-1 (fluorescent lamps, 12 h light/12 h dark cycles) and between 40 to 120 µmol m-2 s-1 for PE-rich and PE-poor strains, respectively, of A. sacrum . Purified exopolysaccharide (EPS) of A.…

Read More »

Tuesday, April 21, 2020

Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723.

Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis.Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined.We describe the NRPS-t1PKS cluster…

Read More »

Monday, March 30, 2020

Webinar: Bioinformatics lunch & learn – HiFi assembly

The release of the PacBio Sequel II System in 2019 brought dramatic throughput improvements and protocols for producing a new data type, highly accurate long reads or HiFi reads. PacBio is the only sequencing technology to offer highly accurate long reads (HiFi reads) that provide Sanger-quality accuracy (>99%) with the read lengths needed for assembly of complex genomes. The long length and high accuracy of HiFi reads makes them the ideal starting point for many applications, and one area of major interest is genome assembly. HiFi assembly is faster, cheaper, more accurate, and easier to phase than standard long-read assembly.…

Read More »

Monday, March 30, 2020

PAG Conference: How SMRT Sequencing is accelerating plant and animal genomics

In this presentation, Justin Blethrow provides an overview of recent and upcoming developments across PacBio’s SMRT Sequencing product portfolio, and their implications for PacBio’s major applications. In presenting the product roadmap, he illustrates how key new products coming in 2019 will make SMRT Sequencing dramatically more affordable and easy to use, and how they will enable customers to routinely produce highly accurate, single-molecule long reads.

Read More »

Monday, March 30, 2020

ASHG PacBio Workshop: Amplicon SMRT Sequencing applications in human genetics

In this ASHG workshop presentation, Stuart Scott of the Icahn School of Medicine at Mount Sinai, presented on using the PacBio system for amplicon sequencing in pharmacogenomics and clinical genomics workflows. Accurate, phased amplicon sequence for the CYP2D6 gene, for example, has allowed his team to reclassify up to 20% of samples, providing data that’s critical for drug metabolism and dosing. In clinical genomics, Scott presented several case studies illustrating the utility of highly accurate, long-read sequencing for assessing copy number variants and for confirming a suspected medical diagnosis in rare disease patients. He noted that the latest Sequel System…

Read More »

1 2 3 17

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »