Menu
September 22, 2019  |  

Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host.

Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host-symbiont system.Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

De novo assembly of the Pasteuria penetrans genome reveals high plasticity, host dependency, and BclA-like collagens.

Pasteuria penetrans is a gram-positive endospore forming bacterial parasite of Meloidogyne spp. the most economically damaging genus of plant parasitic nematodes globally. The obligate antagonistic nature of P. penetrans makes it an attractive candidate biological control agent. However, deployment of P. penetrans for this purpose is inhibited by a lack of understanding of its metabolism and the molecular mechanics underpinning parasitism of the host, in particular the initial attachment of the endospore to the nematode cuticle. Several attempts to assemble the genomes of species within this genus have been unsuccessful. Primarily this is due to the obligate parasitic nature of the bacterium which makes obtaining genomic DNA of sufficient quantity and quality which is free from contamination challenging. Taking advantage of recent developments in whole genome amplification, long read sequencing platforms, and assembly algorithms, we have developed a protocol to generate large quantities of high molecular weight genomic DNA from a small number of purified endospores. We demonstrate this method via genomic assembly of P. penetrans. This assembly reveals a reduced genome of 2.64Mbp estimated to represent 86% of the complete sequence; its reduced metabolism reflects widespread reliance on the host and possibly associated organisms. Additionally, apparent expansion of transposases and prediction of partial competence pathways suggest a high degree of genomic plasticity. Phylogenetic analysis places our sequence within the Bacilli, and most closely related to Thermoactinomyces species. Seventeen predicted BclA-like proteins are identified which may be involved in the determination of attachment specificity. This resource may be used to develop in vitro culture methods and to investigate the genetic and molecular basis of attachment specificity.


September 22, 2019  |  

Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species.

One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in eight weed species, ranging from 3-5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from three to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining six weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least two different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.© The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 21, 2019  |  

Retrotransposons are the major contributors to the expansion of the Drosophila ananassae Muller F element.

The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (~5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains. Copyright © 2017 Leung et al.


September 21, 2019  |  

The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea.

Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.© 2018, Deeg et al.


September 21, 2019  |  

Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8.

Following the often short-lived protection that major nucleotide binding, leucine-rich-repeat (NB-LRR) resistance genes offer against the potato pathogen Phytophthora infestans, field resistance was thought to provide a more durable alternative to prevent late blight disease. We previously identified the QTL dPI09c on potato chromosome 9 as a more durable field resistance source against late blight. Here, the resistance QTL was fine-mapped to a 186 kb region. The interval corresponds to a larger, 389 kb, genomic region in the potato reference genome of Solanum tuberosum Group Phureja doubled monoploid clone DM1-3 (DM) and from which functional NB-LRRs R8, R9a, Rpi-moc1, and Rpi_vnt1 have arisen independently in wild species. dRenSeq analysis of parental clones alongside resistant and susceptible bulks of the segregating population B3C1HP showed full sequence representation of R8. This was independently validated using long-range PCR and screening of a bespoke bacterial artificial chromosome library. The latter enabled a comparative analysis of the sequence variation in this locus in diverse Solanaceae. We reveal for the first time that broad spectrum and durable field resistance against P. infestans is conferred by the NB-LRR gene R8, which is thought to provide narrow spectrum race-specific resistance.


September 21, 2019  |  

Assessing genome assembly quality using the LTR Assembly Index (LAI).

Assembling a plant genome is challenging due to the abundance of repetitive sequences, yet no standard is available to evaluate the assembly of repeat space. LTR retrotransposons (LTR-RTs) are the predominant interspersed repeat that is poorly assembled in draft genomes. Here, we propose a reference-free genome metric called LTR Assembly Index (LAI) that evaluates assembly continuity using LTR-RTs. After correcting for LTR-RT amplification dynamics, we show that LAI is independent of genome size, genomic LTR-RT content, and gene space evaluation metrics (i.e., BUSCO and CEGMA). By comparing genomic sequences produced by various sequencing techniques, we reveal the significant gain of assembly continuity by using long-read-based techniques over short-read-based methods. Moreover, LAI can facilitate iterative assembly improvement with assembler selection and identify low-quality genomic regions. To apply LAI, intact LTR-RTs and total LTR-RTs should contribute at least 0.1% and 5% to the genome size, respectively. The LAI program is freely available on GitHub: https://github.com/oushujun/LTR_retriever.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.